Иммуноглобулины, структура и функции. Иммуноглобулины. Строение иммуноглобулинов. Защитная роль иммуноглобулинов разных классов Динамика антителообразования

Динамика продукции антител в ответ на антигенную стимуляцию опреде-ляется в значительной степени видовой принадлежностью индивидуума, по-скольку генетически детерминирована (Вершигора А.В., 1990). Тем не менее, обнаружены общие закономерности антителообразования, свойственные раз-личным видам животных и человеку. Последние заключаются в следующем.

Интенсивность антителообразования зависит от структурных особен-ностей антигена, способа введения антигена и пути его проникновения в ор-ганизм.

Выработка антител зависит от состояния иммунологической реактив-ности организма, определяемой, в свою очередь, уровнем представи-тельности того клона лимфоцитов, который способен рецептировать данный антиген, наличием или отсутствием мутаций указанного клона, способных повлиять на количество и качество синтезируемых иммуно - глобулинов.

Характер иммунного ответа, безусловно, определяется функциональной активностью макрофагальных элементов, включающих различные популя-ции классических фагоцитов с менее выраженной способностью к презента-ции антигена в реакциях первичного иммунного ответа, а также антигенпре-зентирующих макрофагов с незначительно выраженной фагоцитарной актив-ностью.

Интенсивность антителообразования зависит от гормонального статуса, функциональной активности центральной нервной системы. Избыточный гормональный фон, создаваемый АКТГ, глюкокортикоидами, а также недос-таточность инсулина могут сказаться неблагоприятно на процессах антите-лообразования.

Сила иммунного ответа зависит и от общего состояния организма, дли-тельности предшествующих заболеваний инфекционной и неинфекционной природы, характера воздействия стрессорных раздражителей, состояния электролитного баланса организма, кислотно-основного состояния, степени интенсификации свободнорадикального окисления липидов в биологических мембранах.

Общеизвестно, что при развитии разнообразных типовых патологических процессов возникают неспецифическая дестабилизация биологических мем-бран клеток различных органов и тканей, набухание митохондрий, дефицит АТФ, подавление всех энергозависимых реакций в клетках, в том числе и синтеза антител различных классов иммуноглобулинов.

Установлено, что иммунизация человека антигенами белковой, вирусной природы, липополисахаридными антигенами энтеробактерий стимулирует образование антител преимущественно класса IgG, а у морских свинок по-добные же антигены в основном усиливают синтез антител класса IgM. На одну молекулу введенного антигена синтезируется сравнительно большое количество антител. Так, на каждую молекулу введенного дифтерийного ана-токсина в течение 3 недель синтезируется свыше миллиона молекул антиток-сина.

Для каждого антигена имеются оптимальные дозы воздействия на иммун-ную систему. Малые дозы индуцируют слабый ответ, чрезвычайно большие могут вызвать развитие иммунологической толерантности или оказать ток-сическое влияние на организм.

При первичном антигенном воздействии развиваются 4 фазы иммунного ответа.

1-я фаза выработки антител

1-я фаза выработки антител (фаза покоя, лаг-фаза, фаза индукции, или ла-тентная фаза), то есть период между временем поступления антигена в орга-низм и до начала экспотенциального прироста антител (Йегер Л.,1986; Лед-ванов М.Ю., Киричук В.Ф., 1990).

Длительность указанной фазы может быть различной в зависимости от характера антигена: от нескольких минут и часов до месяца.

Сущность указанной фазы заключается в развитии макрофагальной реак-ции, фагоцитозе или эндоцитозе антигена антигенпредставляющими или фа-гоцитирующими макрофагами, в образовании высокоиммуногенных фракций антигена в комплексе с антигенами МНС I и II класса, презентации антигена В- и Т-лимфоцитам, кооперативном взаимодействии макрофагальных кле-точных элементов и антигенчувствительных субпопуляций Т- и В-лимфоцитов, развитии плазматизации лимфоидной ткани. Как указывалось выше, одной из особенностей лимфоидных клеток является сохранение в них уникального репарирующего хромосомы фермента стволовой кроветворной клетки - теломеразы, что обеспечивает возможность неоднократной цикличе-ской пролиферации в течение жизни на фоне антигенной стимуляции.

Как известно, существуют два механизма активации покоящихся В-лимфоцитов с последующим включением их в пролиферацию и дифферен-цировку.

Для основной субпопуляции В2-лимфоцитов, дифференцирующихся в ко-стном мозге, включение в иммунный ответ обеспечивается их взаимодейст-вием с Т-хелперами, рестриктированными по главному комплексу гистосов-местимости, а также различными цитокинами - факторами роста и пролифе-рации.

Отобранный клон В-лимфоцитов вступает в фазу пролиферации, что обеспечивает увеличение представительства в лимфоидной ткани антиген-чувствительного клона В-лимфоцитов, способного к дальнейшей трансфор-мации.

ВI (CD5) субпопуляция лимфоцитов, покидающая костный мозг в раннем периоде эмбрионального развития и дифференцирующаяся вне костного моз-га, способна на Т- независимую активацию под влиянием определенной группы антигенов - бактериальных полисахаридов. В процессе плазматиза-ции ВI-субпопуляции лимфоцитов на фоне антигенной стимуляции образу-ются иммуноглобулины класса М с широкой перекрестной реактивностью.

2-я фаза выработки антител

2-я фаза выработки антител (логарифмическая фаза, лог-фаза, продуктив-ная фаза). Эта фаза получила название фазы экспотенциального прироста ан-тител. Она занимает промежуток времени от появления антител до достиже-ния максимального количества их в крови, в среднем продолжается от 2 до 4 дней. В некоторых случаях длительность фазы возрастает до 15 дней.

Экспотенциальный рост количества антител, удвоение их титров, проис-ходят первоначально каждые 2-4 часа, а затем каждые- 4-6 часов. Однако скорость антителообразования уже к концу вторых-третьих суток замедляет-ся, оставаясь на определенном уровне в течение различного периода време-ни.

3-я фаза выработки антител

3-я фаза выработки антител - фаза стабилизации, или стационарный пери-од, в течение которого титр антител остается стабильно высоким. В этот пе-риод прекращается переход клеток из класса активированных предшествен-ников в класс антителообразующих клеток.

Длительность фазы стабилизации в значительной мере определяется структурными особенностями антигенов-аллергенов. В ряде случаев она продолжается в течение нескольких дней, недель, месяцев. Антитела к неко-торым микробным антигенам продолжают синтезироваться в достаточно вы-соком титре на протяжении ряда лет.

Касаясь значимости указанной фазы стабилизации, следует отметить, что антитела не только обеспечивают инактивацию бактериальных, токсических, аллергических патогенных факторов в различных реакциях агглютинации, преципитации, активации комплемента, антителозависимого цитолиза, но и выполняют роль ауторегуляторов иммунопоэза.

4-я фаза снижения продукции антител

Длительность этой фазы различна и зависит от сохранности антигена в тканях.

Вышеописанная динамика антителообразования возникает в случае пер-вичной иммунизации. Повторная иммунизация спустя несколько месяцев из-меняет динамику иммунного ответа. Латентный период и период нарастания титра антител становятся значительно короче, количество антител достигает максимума быстрее и дольше сохраняется на высоком уровне, повышается аффинность антител.

В развитии вторичного иммунного ответа важная роль отводится возрас-танию уровня клеток иммунологической памяти к данному антигену. С уве-личением длительности иммунизации повышается специфичность антител к растворимым антигенам.

Следует отметить, что образование комплексов антиген-антитело в про-цессе многократной иммунизации увеличивает силу антигенного воздействия и интенсивность антителообразования.

Как установлено на протяжении последних десятилетий, синтез иммуног-лобулинов является саморегулирующимся процессом. Доказательством этого служит ингибирующее воздействие на продукцию антител специфических иммуноглобулинов, введенных в кровоток, причем, чем выше аффинность антител, тем интенсивнее их ингибирующее действие на процессы иммуно-поэза. Антитела могут оказывать тормозящее влияя-ние на синтез не только гомологичных, но и родственных иммуноглобулинов. Образование антител могут тормозить и большие дозы неспецифических -глобулинов.

Структура и функциональная значимость иммуноглобулинов.

Белки, входящие в семейство иммуноглобулинов, имеют одинаковый принцип строения: их молекулы включают легкие и тяжелые полипептидные цепи (Долгих Р.Т.,1998).

Согласно номенклатуре ВОЗ (1964) различают 5 классов иммуно-глобулинов: IgG, IgA, IgM, IgE, IgD. Для каждого класса иммуно-глобулинов характерны свои специфические тяжелые Н-цепи, обозна-чаемые соответст-венно классу иммуноглобулинов (m, g, а, d, e). Именно особенности структу-ры Н-цепей определяют принадлежность иммуно-глобулина к тому или ино-му классу.

Иммуноглобулины образованы по меньшей мере четырьмя поли-пептидными цепями, соединенными между собой дисульфидными мостика-ми. Две из них представлены тяжелыми Н-цепями, а две - легкими L-цепями. Различают два вида легких цепей k и l, которые могут встречаться в имму-ноглобулинах каждого из 5 классов. Иммуноглобулины классов G, D и E яв-ляются мономерами, в то же время IgM встречается преимущественно в виде пентамера, а IgA - в виде моно-, ди- и тетрамера. Полимеризация мономеров в молекулах иммуноглобулинов классов А и М обеспечивается наличием до-полнительных J-цепей (Вершигора А.В., 1990; Ройт А., 1991; Стефани Д.Ф., Вельтищев Ю.Е.,1996).

Как в тяжелых, так и в легких цепях, имеются вариабельная V-область, в которой последовательность аминокислот непостоянна, а также постоянная, константная, С-область.

Вариабельные участки легких и тяжелых цепей принимают участие в формировании активного центра антител, определяют специфичность струк-туры антидетерминанты антител, обеспечивающей связывание детерминанты антигена.

У одной молекулы антител могут быть однозначными легкие цепи (k или l).

Антитела разной специфичности могут содержаться в любом из классов иммуноглобулинов. В лимфоидной ткани в ответ на действие одного и того же антигена одновременно происходит синтез полипептидных цепей различ-ных классов иммуноглобулинов.

Общим в структуре иммуноглобулинов различных классов является нали-чие так называемых Fab-фрагментов (Fragment antigen binding), Fc-фрагмента (Fragment crystalline) и Fd-фрагмента (Fragment difficult).

Fab-фрагмент включает антигенчувствительные рецепторные групппы, способные специфически связывать антиген. В формировании Fab-фрагмента принимает участие CD-участок (аминоконцевая часть тяжелой цепи), а, воз-можно, и фрагмент вариабельной части легкой цепи.

Fc-фрагмент определяет неспецифические функции антител: фиксацию комплемента, способность проходить через плаценту, фиксацию иммуногло-булинов на клетках.

Исследование структуры иммуноглобулинов затруднено из-за их гетеро-генности. Гетерогенность иммуноглобулинов обусловлена тем, что молекулы иммуноглобулинов являются носителями различных совокупностей детер-минант. Различают три основных разновидности гетерогенности антител: изотипию, аллотипию, идиотипию.

Изотипические варианты антител встречаются у всех индивидов. К ним следует отнести подклассы различных типов иммуноглобулинов.

В классе IgG известны 4 изотипа (IgG1, IgG2, IgG3, IgG4) , в классах IgA, IgM и IgD имеются 2 изотипа, или подкласса.

Изотипические детерминанты антител одного класса и подкласса у особей данного вида идентичны. Изотипические различия определяются аминокис-лотной последовательностью в постоянной части тяжелых цепей, а также ко-личеством и положением дисульфидных мостиков. Так, IgG1 и IgG4 имеют четыре межцепочечные дисульфидные связи, две из которых соединяют Н-цепи. В молекуле IgG2 есть шесть дисульфидных мостиков, четыре из кото-рых связывают полипептидные цепи.

К изотипическим вариантам следует причислить k и l - типы и подтипы L-цепей.

Вариабельные области легких цепей определенного типа могут быть раз-делены на подгруппы. У L-цепей k-типа существует 4 подгруппы, у L-цепей l - 5 подгрупп. Цепи разных подгрупп помимо отличий первичной структуры характеризуются вариацией последовательности двадцати N-концевых ами-нокислот.

Для вариабельной части Н-цепи описаны 4 подгруппы.

Аллотипические варианты иммуноглобулинов у человека и животных генетически детерминированы, частота их варьирует у индивидов различных видов. Аллотипы представляют собой аллельные варианты полипептидных цепей, возникающие в процессе мутаций. Синтез аллотипов контролируется различными аллелями генов. Имеется шесть аллотипов глобулинов кролика. В настоящее время известно много систем аллотипических маркеров имму-ноглобулинов человека, расположенных в С-области L и Н-цепей. Существо-вание некоторых из этих маркеров обусловлено развитием точечной мутации и заменой лишь одной аминокислоты в полипептидной последовательности. Если мутация затрагивает структуру области, специфичную для определен-ного класса и подкласса иммуноглобулинов, образуется аллотипический ва-риант.

В сыворотке одного индивидуума можно обнаружить несколько аллоти-пических маркеров.

Идиотипические различия антител по существу отражают специфич-ность антител. Они связаны с вариабельными участками полипептидных це-пей, не зависят от особенностей структуры различных классов иммуноглобу-линов, оказываются идентичными у разных лиц при наличии у них антител к одному и тому же антигену.

Идиотипических вариантов существует примерно столько же, сколько и различных по специфичности антител. Принадлежность антитела к опреде-ленному идиотипу иммуноглобулинов обусловливает специфичность взаи-модействия его с антигеном. Принято считать, что наличие от 5000 до 10000 различных вариантов специфичности антител достаточно, чтобы связать с большей или меньшей аффинностью любую из возможных разновидностей антигенных детерминант. В настоящее время антигенные детерминанты V-областей также принято называть идиотипами.

Аффинность и авидность являются важнейшими свойствами антител раз-личных классов иммуноглобулинов, причем аффинность отражает прочность связи активного центра антител с детерминантой антигена, в то время как авидность характеризует степень связывания антигена антителом, опреде-ляемую аффинностью и количеством активных центров антитела.

Гетерогенная популяция антител имеет набор различных по аффинности антидетерминант, поэтому, определяя ее авидность, мы определяем усред-ненную аффинность. При равной аффинности авидность IgM может быть больше, чем авидность IgG, поскольку IgM функционально имеет пять ва-лентностей, а IgG двухвалентен.

Генетика образования антител

Как указывалось выше, иммуноглобулины различных классов и подклас-сов представлены тяжелыми и легкими полипептидными цепями, в каждой из которых имеются вариабельные и константные участки. В настоящее вре-мя установлено, что синтез вариабельной области находится под контролем многих V-генов, количество которых ориентировочно равняется 200.

В противоположность этому для константной области известно ограни-ченное число С-генов в соответствии с ее незначительной вариабельностью (класс, подкласс, тип, подтип).

На начальных этапах формирования лимфоидной ткани V- и С- гены рас-полагаются в далеко отстоящих друг от друга сегментах ДНК, а в геноме со-зревающих иммунокомпетентных клеток они объединяются за счет трансло-кации в одном сублокусе, контролирующем синтез Н- и L-цепей.

Формирование многообразия антител объясняется гипотезой соматиче-ской гипермутабельности V-генов, что маловероятно, а также гипотезами ге-нетической рекомбинации генов и ошибок рекомбинации.

Общая характеристика отдельных классов иммуноглобулинов

В связи с особенностями физико-химической структуры, антигенности и биологических функций различают 5 основных классов иммуноглобулинов (IgM, IgG, IgA, IgE, IgD).

Следует отметить, что антитела одной специфичности могут принадле-жать к различным классам иммуноглобулинов; в то же время к одному клас-су иммуноглобулинов могут принадлежать антитела различной специфично-сти.

Иммуноглобулины класса М

Иммуноглобулины класса М являются наиболее ранними как в филогене-тическом, так и в онтогенетическом отношении. В эмбриональном периоде и у новорожденных синтезируются в основном IgM. На долю IgM приходится около 10% общего количества иммуноглобулинов, средняя концентрация их в сыворотке женщин составляет 1,1 г/л, в сыворотке мужчин - 0,9 г/л.

Антитела класса IgM пятивалентны, обладают выраженной способ-ностью агглютинировать, преципитировать и лизировать антигены. Из всех типов антител IgM проявляют наибольшую способность к связыванию ком-племента. IgM находятся преимущественно в плазме крови и лимфе, ско-рость их биосинтеза составляет около 7 мг/сутки, период полужизни - 5,1 дня. IgM не проходят через плаценту. Обнаружение у плода IgM в высокой концентрации свидетельствует о внутриматочной инфекции.

Касаясь структурной организации IgM, необходимо отметить, что моле-кулы IgM имеют ММ, равную 900“000 с константой седиментации 19S, включают 5 субъединиц, соединенных дисульфидными связями между тяже-лыми цепями. Каждая субъединица IgM имеет ММ 180“000 и константу се-диментации 7S, идентична по структуре молекуле IgG.

Воздействуя на молекулу IgM пепсином, трипсином, химотрипсином, па-паином, можно получить различные фрагменты (Fab, Fd, Fc). В составе IgM имеется J-цепь,участвующая в полимеризации молекулы.

В зависимости от способности фиксировать комплемент при участии Fc-фрагмента IgM делятся на два подкласса: IgM1 и IgM2. IgM1 связывают ком-племент, IgM2 не связывают комплемент.

При электрофоретическом исследовании макроглобулины мигрируют в зоне -глобулиновой фракции.

К концу 2-го года жизни ребенка содержание IgM составляет 80% от его содержания у взрослых. Максимальная концентрация IgM отмечается в 8 лет.

Иммуноглобулины класса G

IgG представляют собой наиболее изученный класс иммуноглобу-линов, содержатся в сыворотке крови в максимально высокой по сравнению с дру-гими иммуноглобулинами концентрации (в среднем 12,0 г/л) , составляют 70-75% общего количества иммуноглобулинов.

Молекулярная масса IgG равна 150“000, константа седиментации-7S.

Обладая двумя антигенсвязывающими центрами,IgG образуют с полива-лентными антигенами сетевую структуру, вызывают преципитацию раство-римых антигенов, а также агглютинацию и лизис корпускулярных и патоген-ных агентов.

Выделяют наличие 4 подклассов IgG: IgG1, IgG2, IgG3, IgG4.

Максимальной способностью активировать комплемент по классическому пути обладают подклассы IgG3, IgG1 и IgG2. Подкласс IgG4 способен акти-вировать комплемент по альтернативному пути.

Антитела, относящиеся к подклассам IgG1, IgG3, IgG4, беспрепятственно проникают через плаценту, антитела подкласса IgG2 обладают ограниченной способностью трансплацентарного транспорта.

IgG образуют основную линию специфических иммунологических меха-низмов защиты против различных возбудителей. Антитела подкласса IgG2 в основном продуцируются против антигенов полисахаридной природы, анти-резусные антитела относятся к IgG4.

Молекулы IgG свободно диффундируют из плазмы крови в тканевую жидкость, где находится почти половина (48,2 %) имеющегося в организме IgG.

Скорость биосинтеза IgG составляет 32 мг/кг массы в сутки, период полу-распада - 21-23 дня. Исключение составляют IgG3, для которых период полу-распада значительно короче - 7-9 дней.

Трансплацентарный переход IgG обеспечивается особой группировкой Fc-фрагмента. Переходящие через плаценту антитела от матери к ребенку имеют существенное значение для защиты организма ребенка от ряда микро-бов и токсинов: возбудителей дифтерии, столбняка, полиомиелита, кори. К концу первого года жизни ребенка в крови содержится 50-60% IgG от их со-держания у взрослого человека, к концу 2-го года - около 80% такового пока-зателя у взрослых.

Дефицит IgG2 и IgG4 в первые годы жизни определяет высокую чувстви-тельность ребенка к патогенному воздействию пневмококков, менингококков и других возбудителей.

Иммуноглобулины класса A

В соответствии с особенностями структуры выделяют три типа иммуног-лобулинов класса А:

 сывороточные IgA, имеющие мономерную структуру и состав-ляющие 86% всего содержащегося в сыворотке IgA;

 cывороточные димерные IgA;

 cекреторные IgA, представляющие собой полимер, чаще всего димер, характеризуются наличием добавочного секреторного компонента, отсутствующего у сывороточного IgA.

IgA не определяются в секретах новорожденных; в слюне они появляются у детей в возрасте 2 месяцев. Содержание секреторного IgA в слюне достига-ет его уровня у взрослого к 8 годам. К концу первого года жизни ребенка в крови содержится примерно 30% IgA. Плазматический уровень IgA достига-ет такового у взрослых к 10-12 годам. Иммуноглобулины класса А составля-ют около 20% общего количества иммуноглобулинов.

В норме в сыворотке крови отношение IgG/IgA составляет 5-6, а в секре-тируемых биологических жидкостях (слюна, кишечный сок, молоко) оно уменьшается до 1 и менее. IgA содержатся в количестве до 30 мг на 100 мл секрета.

По физико-химическим свойствам IgA гетерогенны, могут встречаться в форме мономеров, димеров и тетрамеров с константами седиментации 7, 9, 11, 13. В сыворотке крови IgA представлены преимущественно мономерной формой; сывороточный IgA синтезируется в селезенке, лимфатических узлах и слизистых оболочках.

Биологическая функция IgA заключается в основном в местной защите слизистых оболочек от инфекции. Проникшие под эпителий антигены встре-чают димерные молекулы IgA. Образующиеся при этом комплексы активно выносятся на поверхность слизистых после их соединения с транспортным фрагментом в мембранах эпителия.

Высказывается предположение о возможности активации комплемента при участии IgA альтернативным путем и, таким образом, обеспечения при участии IgA процессов опсонизации и лизиса бактерий.

Известно также, что секреторный IgA препятствует адгезии бактерий к эпителиальным клеткам, затрудняя этим колонизацию слизистых бактерия-ми.

Помимо секреторного IgA существенное значение имеют содер-жащиеся в секретах у человека IgM и IgG, причем IgM могут активно секретироваться за счет наличия секреторного компонента и играть важную роль в обеспече-нии местного иммунитета в пищеварительном тракте. IgG могут проникать в секреты лишь пассивным путем.

Система секреторных иммуноглобулинов обеспечивает интенсивный, но непродолжительный иммунный ответ и не формирует клеток иммунологиче-ской памяти, препятствует контакту антигенов с плазматическими IgG и IgM, последующей активации комплемента и цитолитического разрушения собст-венных тканей.

Иммуноглобулины класса D

Иммуноглобулины класса D составляют около 2% общего количества им-муноглобулинов крови. Концентрация их в сыворотке достигает 30 мг/л, ММ составляет, по данным разных авторов, от 160“000 до 180“000; константы се-диментации колеблются от 6,14 до 7,04 S. IgD не связывают комплемент, не проходят через плаценту и не связываются тканями. 75% IgD содержится в плазме крови, период полураспада составляет 2,8 дня, скорость биосинтеза 0,4 мг/кг в день. Биологическая функция IgD неясна; на определенных стади-ях дифференцировки В-лимфоцитов IgD выполняют роль рецептора. Кон-центрация IgD возрастает почти вдвое во время беременности, а также уве-личивается при некоторых хронических воспалительных процессах.

Иммуноглобулины класса E

Концентрация IgE в плазме составляет 0,25 мг/л, процентное содержание от общего количества иммуноглобулинов - 0,003%, период полураспада 2,3 - 2,5 дня; скорость биосинтеза - 0,02 мг/кг массы в день.

IgE не связывают комплемент, не проходят через плаценту, термо-лабильны, быстро и прочно связываются аллогенными тканями, не преципи-тируют антигены. При аллергических заболеваниях концентрация IgE резко возрастает и достигает в среднем 1,6 мг/л.

Плазматические клетки, синтезирующие IgE, обнаруживаются в основном в слизистых оболочках бронхов и бронхиол, желудочно-кишечного тракта, мочевого пузыря, в миндалинах и аденоидной ткани. Распределение клеток, продуцирующих IgE, сходно с распределением IgA - продуцирующих клеток.

В случае преодоления барьера, образованного секреторными IgA, проис-ходит взаимодействие антигена с IgE - антителами, фиксированными на туч-ных клетках, индуцируется развитие аллергических реакций. Концентрация IgE в крови достигает уровня взрослых примерно к 10 годам. При участии Fc-фрагмента IgE фиксируются на поверхности клеток за счет Fc-рецепторов.

Различают классические высокоаффинные рецепторы тучных клеток и ба-зофилов для IgE, причем на одном базофиле могут фиксироваться от 30ґ103 до 400ґ103 молекул IgE, а также низкоаффинные рецепторы. Последние представлены в основном на макрофагах, эозинофилах, тромбоцитах.

Антитела класса IgE ответственны за развитие анафилактических (атопи-ческих) аллергических реакций гуморального типа.

Следует отметить, что в крови присутствует лишь около 1% IgE, более 99% IgE секретируются энтероцитами в просвет кишечника, причем секрети-руемые в просвет кишечника IgE создают противогельминтозную защиту, в частности, за счет IgE-зависимого цитолиза, обеспечиваемого эозинофилами. Как известно, эозинофилы могут продуцировать два токсических белка - большой основной протеин и катионный протеин эозинофилов.

Иммунная система осуществляет свою биологическую функцию с помощью сложного комплекса взаимосвязанных реакций. В них задействованы все ее структурные и функциональные элементы. Конкретные проявления иммунного реагирования можно подразделить на отдельные формы: антителообразование, иммунный фагоцитоз, клеточно-опосредованный киллинг, реакции гиперчувствительности, формирование иммунологической памяти или толерантности.

Все элементы иммунной системы имеют единый принцип управления и активируются практически одновременно, однако в зависимости от характера антигенного воздействия одна или несколько форм доминируют. Например, при токсинемической инфекции преимущественно активируется продукция антител, способных нейтрализовать молекулы токсина, при туберкулезной инфекции основную функциональную нагрузку выполняют факторы клеточного иммунитета.

11.1. Антитела и антителообразование

11.1.1. Природа антител

Одной из филогенетически наиболее древних форм иммунной защиты является биосинтез антител - белков, специфически реагирующих с антигенами. Антитела относятся преимущественно к γ-глобулиновой фракции белков плазмы крови, на долю которых приходится 15-25% ее белкового содержания, что составляет примерно 10-20 г/л. Поэтому антитела получили название иммуноглобулинов, и их обозначают символом Ig. Следовательно антитела - это γ-глобулины плазмы крови, способные специфически связываться с антигеном и участвовать во многих иммунных реакциях.

Антитела синтезируются В-лимфоцитами и их потомками - плазматическими клетками и в циркулирующей форме, и в виде рецепторных молекул на иммунокомпетентных клетках. Циркулирующие антитела подразделяются на сывороточные и секреторные. К антителам могут быть также отнесены белки Бенс-Джонса, которые являются фрагментами молекулы Ig (его легкая цепь) и синтезируются в избытке при миеломной болезни.

Строение и функцию антител изучали многие видные ученые: П. Эрлих (1885) предложил первую теорию гуморального иммунитета, Э. Беринг и С. Китазато (1887) получили первые антитоксические сыворотки к дифтерийному и столбнячному токсинам, А. Безредка (1923) разработал метод безопасного введения пациентам лечебных иммунных сывороток. Большая заслуга в расшифровке молекулярного строения Ig принадлежит Д. Эдельману и Р. Портеру (1959), а разгадка многообразия антител - Ф. Бернету

(1953) и С. Тонегаве (1983).

11.1.2. Молекулярное строение антител

Иммуноглобулины - это белки сыворотки крови. Они секретируются плазматическими клетками в ответ на антиген. Молекулы Ig имеют универсальное строение (рис. 11.1). Они состоят из 2 пар полипептидных цепей: двух тяжелых (550-660 аминокислотных остатков, молекулярная масса - 50 кД) и двух легких (220 аминокислотных остатков, молекулярная масса - 20-25 кД). Обозначают их как H- (от англ. heavy - тяжелый) и L- (от англ. light - легкий) цепи. Тяжелые и легкие цепи связаны между собой попарно дисульфидными связями (-S-S-). Между тяжелыми цепями также есть дисульфидная связь - это так называемый шарнирный участок. Такой тип межпептидного соединения позволяет молекуле Ig легко менять свою конформацию в зависимости от окружающих условий и состояния. Область шарнирного участка ответственна за взаимодействие с первым компонентом комплемента (С1) и его активацию по классическому пути.

Различают структурные варианты легких и тяжелых полипептидных цепей молекулы Ig. Легкие цепи бывают 2 типов: κ и λ (каппа и лямбда). Тяжелых цепей известно 5 типов: α, γ, μ, ε и δ (альфа, гамма, мю, эпсилон и дельта). Среди многообразия цепей α-типа выделяют α 1 - и а 2 -подтипы, μ-цепей - μ 1 и μ 2 , γ-цепей - γ 1 -, γ 2 -, γ 3 - и γ 4 -подтипы.

Рис. 11.1. Схема строения молекулы иммуноглобулина класса G: V - вариабельный домен; C - константный домен; S - дисульфидная связь шарнирного участка

Вторичная структура полипептидных цепей молекулы Ig имеет доменное строение - ее отдельные участки свернуты в глобулы (домены), стабилизированные внутренней дисульфидной связью. Таких доменов в составе тяжелой цепи Ig бывает 4-5, в легкой - 2. Каждый домен состоит примерно из 110 аминокислотных остатков.

Домены различаются по постоянству аминокислотного состава. Выделяют С-домены (от англ. constant - постоянный) с относительно постоянной структурой и V-домены (от англ. variable - изменчивый) с переменной структурой. В составе легкой цепи есть по одному V- и С-домену, а в тяжелой - один V- и 3-4 С-домена. Примечательно, что не весь вариабельный домен изменчив по своему аминокислотному составу, а лишь его незначительная часть - гипервариабельная область, на долю которой приходится около 25%.

Вариабельные домены легкой и тяжелой цепей совместно образуют участок, который специфически связывается с антигеном, - антигенсвязывающий центр, или паратоп. Гипервариабельные области тяжелой и легкой цепей определяют индивидуальные особенности строения антигенсвязывающего центра для каждого клона Ig и многообразие их специфичностей.

Обработка ферментами молекулы Ig приводит к ее гидролизу на определенные фрагменты. Так, папаин разрывает молекулу выше шарнирного участка и ведет к образованию трех фрагментов (см. рис. 11.1). Два из них способны специфически связываться с антигеном. Они состоят из цельной легкой цепи и участка тяжелой (V-

и C-домен), и в их структуру входят антигенсвязывающие участки. Эти фрагменты получили название Fab (от англ. - фрагмент, связывающийся с антигеном). Третий фрагмент, способный образовывать кристаллы, получил название Fc (от англ. - фрагмент кристаллизующийся). Он ответствен за связывание с рецепторами на мембране клеток макроорганизма (Fc-рецепторы) и некоторыми микробными суперантигенами (например, белком А стафилококка). Пепсин расщепляет молекулу Ig ниже шарнирного участка и ведет к образованию 2 фрагментов: Fc и двух сочлененных Fab, или F(ab) 2 .

В структуре молекул Ig обнаруживают дополнительные полипептидные цепи. Так, полимерные молекулы IgM, IgA содержат J-пептид (от англ. join - соединяю), который объединяет отдельные мономеры в единое макромолекулярное образование (см. раздел 11.1.3). Молекулы секреторных Ig обладают S-пептидом (от англ. secret - секрет). Это так называемый секреторный компонент. Его молекулярная масса составляет 71 кД, он является β-глобулином и предохраняет молекулу Ig в секрете слизистых оболочек от ферментативного расщепления. Рецепторный Ig, локализующийся на цитоплазматической мембране антителопродуцирующих клеток, имеет дополнительный гидрофобный трансмембранный М-пептид (от англ. membrane - мембрана). Он прочно удерживает молекулу Ig в липидном бислое цитоплазматической мембраны и проводит рецепторный сигнал через цитоплазматическую мембрану внутрь клетки. J- и M-пептиды присоединяются к молекуле Ig в процессе ее биосинтеза. S-пептид является продуктом эпителиальной клетки - он присоединяется к J-пептиду полимерной молекулы Ig при ее транслокации через эпителиальную клетку.

11.1.3. Структурно-функциональные особенности иммуноглобулинов различных классов

В зависимости от особенностей молекулярного строения тяжелой цепи, а следовательно, наличия изотипических, или групповых, антигенных детерминант различают 5 классов или изотипов Ig (рис. 11.2). Молекулы, содержащие тяжелую цепь α-типа, относят к изотипу, или классу A (сокращенно IgA), δ-типа - IgD, ε-типа - IgE, γ-типа - IgG и μ-типа - IgM. Различают также подклассы Ig.

Рис. 11.2. Схема строения иммуноглобулинов различных классов (пояснение в тексте)

Для каждого изотипа Ig характерны свои особенности. В частности, Ig D, E и G имеют мономерное строение, IgM практически всегда является пентамером, а молекула IgA может быть моно-, ди- и тримером. Наиболее характерные черты различных изотипов Ig приведены в табл. 11.1.

Таблица 11.1. Основные характеристики иммуноглобулинов человека

Окончание табл. 11.1

Иммуноглобулин класса G составляет основную массу Ig сыворотки крови, на его долю приходится 70-80% всех циркулирующих Ig, при этом 50% содержится в тканевой жидкости. Среднее содержание IgG в сыворотке крови здорового взрослого человека - 12 г/л, что достигается к 7-10-летнему возрасту. Период полураспада IgG 21 день.

IgG - мономер, имеет 2 антигенсвязывающих центра, может связать 2 молекулы антигена подряд. Молекулярная масса около 160 кД, константа седиментации 7S. Синтезируется зрелыми В-лимфоцитами (Β γ) и плазматическими клетками. Хорошо определяется в сыворотке крови на пике первичного и при вторичном иммунном ответе. Обладает высокой аффинностью (см. раздел 11.1.5).

Различают подтипы G1-G4. IgG1 и G3 связывают комплемент, причем G3 активнее. IgG4 подобно IgE обладает цитофильностью (тропностью, или сродством, к тучным клеткам и базофилам) и участвует в развитии аллергической реакции I типа (см. раздел 11.4).

Легко проходит через плацентарный барьер и обеспечивает гуморальный иммунитет новорожденного в первые 3-4 мес после рождения, в том числе обнаруживается в молоке. IgG обеспечивает нейтрализацию и маркирование антигена, осуществляет запуск комплементопосредованного цитолиза и АЗКЦТ.

Иммуноглобулин класса M - наиболее крупная молекула из всех Ig. Это пентамер, который имеет 10 антигенсвязывающих центров. Его молекулярная масса около 900 кД, константа седи-

ментации 19S. Различают подтипы М1 и М2. Тяжелые цепи молекулы IgM, в отличие от других изотипов, построены из 5 доменов. Являясь полимерной молекулой, содержит J-цепь. Период полураспада 5 дней.

На его долю приходится 5-10% всех циркулирующих Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека около 1 г/л. Этого уровня человек достигает уже к 2-4-летнему возрасту. IgM филогенетически наиболее древний иммуноглобулин. Образуется в начале первичного иммунного ответа.

Обладает высокой авидностью, наиболее эффективный активатор комплемента по классическому пути. Большая часть нормальных антител и изоагглютининов относится к IgM. Не проходит через плаценту. Обнаружение высоких титров специфических антител изотипа M в сыворотке крови новорожденного указывает на бывшую внутриутробную инфекцию или дефект плаценты. IgM обеспечивает нейтрализацию и маркирование антигена, осуществляет запуск комплементопосредованного цитолиза и АЗКЦТ. Является маркером острого инфекционного процесса.

Иммуноглобулин класса A существует в сывороточной и секреторной формах. Около 60% всех IgA содержится в секретах слизистых оболочек.

Сывороточный IgA. На его долю приходится около 10-15% всех циркулирующих Ig. В сыворотке крови здорового взрослого человека содержится около 2,5 г/л IgA, максимум достигается к 10- летнему возрасту. Период полураспада 6 дней.

IgA - мономер, имеет 2 антигенсвязывающих центра, молекулярную массу около 170 кД и константу седиментации 7S. Различают подтипы A1 и A2. Синтезируется зрелыми иммунными В-лимфоцитами (Β α) и плазматическими клетками. Хорошо определяется в сыворотке крови на пике первичного и при вторичном иммунном ответе. Обладает высокой аффинностью. Не связывает комплемент. Не проходит через плацентарный барьер. IgA обеспечивает нейтрализацию и маркирование антигена, осуществляет запуск АЗКЦТ.

Секреторный IgA (s IgA) существует в полимерной форме в виде диили тримера (4- или 6-валентный), несет 4 или 6 паратопов и содержит J- и S-пептиды. Молекулярная масса 350 кД и выше, константа седиментации 13S и выше.

Синтезируется В1-лимфоцитами, плазматическими клетками и, возможно, В1-лимфоцитами в пределах слизистых оболочек и вы-

деляется в их секреты. Объем продукции может достигать 5 г в сутки. Пул sIgA считается самым многочисленным в организме - его количество превышает суммарное содержание IgM и IgG. В сыворотке крови s IgA не обнаруживается.

Формирование четвертичной структуры молекулы sIgA происходит при ее транслокации через эпителиальную клетку. На базальной и латеральной поверхности эпителиальная клетка несет рецептор к J-цепи полимерной молекулы Ig (JR). Присоединяясь к рецептору, IgA эндоцитируется клеткой в виде везикулы и переносится к апикальной поверхности эпителиоцита, где JR подвергается ферментативному расщеплению. В результате IgA высвобождается в слизистый секрет просвета органа уже в секреторной форме, так как оставшийся прикрепленным к молекуле Ig фрагмент JR становится S-цепью.

Секреторная форма IgA - основной фактор специфического гуморального местного иммунитета слизистых оболочек желудочнокишечного и респираторного тракта, мочеполовой системы. Благодаря S-цепи он устойчив к действию протеаз. sIgA не активирует комплемент, но эффективно связывается с антигенами, нейтрализует их и препятствует адгезии микробов на эпителиальных клетках.

Иммуноглобулин класса E называют также реагином. Содержание в сыворотке крови крайне невысоко - примерно 0,00025 г/л. Молекулярная масса около 190 кД, константа седиментации примерно 8S, мономер. На его долю приходится около 0,002% всех циркулирующих Ig. Этот уровень достигается к 10-15 годам жизни.

Синтезируется зрелыми В-лимфоцитами (Β ε) и плазматическими клетками преимущественно в лимфоидной ткани бронхолегочного дерева и желудочно-кишечного тракта. Не связывает комплемент. Не проходит через плацентарный барьер. Обладает выраженной цитофильностью - тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа - реакция I типа (см. раздел 11.4).

Иммуноглобулин класса D практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2% общего количества циркулирующих Ig). IgD имеет молекулярную массу 160 кД и константу седиментации 7S, мономер. Не связывает комплемент. Не проходит через плацентарный барьер. Экспрессируется на предшественниках В-лимфоцитов.

Рецепторные иммуноглобулины, или мембранные, локализуются на цитоплазматической мембране В-лимфоцитов и выполняют

функции их антигенспецифических рецепторов. Имеют те же изотип и специфичность, что и синтезируемые в межклеточную среду антитела. Содержат особый дополнительный M-пептид, благодаря которому молекула рецепторного Ig фиксируется в цитоплазматической мембране иммунокомпетентной клетки.

Нормальные антитела, или естественные, - совокупность Ig сыворотки крови человека различной специфичности, формирующих их базальный уровень. К ним относят изогемагглютинины - антитела к эритроцитарным антигенам групп крови (например, система АВ0), антигенам бактерий кишечной группы, кокков и некоторых вирусов. Эти антитела постоянно образуются в организме без видимой антигенной стимуляции. Отражают готовность макроорганизма к иммунному реагированию, а также свидетельствуют об отдаленном контакте с антигеном.

Моноклональные антитела. Каждый В-лимфоцит и его потомки, образовавшиеся в результате клеточного деления (т.е. клон), способны синтезировать антитела с паратопом строго определенной специфичности. Такие антитела получили название моноклональных. В естественных условиях макроорганизма получить моноклональные антитела практически невозможно, так как на одну и ту же антигенную детерминанту одновременно реагируют до 100 различных клонов В-лимфоцитов, незначительно различающихся антигенной специфичностью. Поэтому в результате иммунизации даже монодетерминантным антигеном мы всегда получаем поликлональные антитела.

Принципиально получение моноклональных антител выполнимо, если провести предварительную селекцию антителопродуцирующих клеток и их клонирование, т.е. получение необходимых клонов. Однако задача осложняется тем, что число генераций В-лимфоцитов, как и других эукариотических клеток, ограничено. Тем не менее проблема была успешно решена Д. Келлером и Ц. Мильштайном (1975). Исследователи получили гибриды иммунных В-лимфоцитов и миеломных (опухолевых) клеток, которые обладали свойствами антителопродуцента и «бессмертием» раково-трансформированной клетки. Такой вид клеток получил название гибридом. В ходе дальнейшей селекции были отобраны клоны с наивысшей продуктивностью и аффинностью специфических антител. Гибридомные моноклональные антитела нашли широкое применение при создании диагностических и лечебных иммунобиологических препаратов.

Полные и неполные антитела. Такое подразделение основано на способности образовывать в реакции агглютинации или преципитации (in vitro) хорошо различимый глазом результат. Таким свойством обладают полные антитела. К ним относятся IgМ, а также некоторые IgA и G.

Неполные антитела лишены такой способности, несмотря на то, что они специфически связываются с антигеном - их еще называют неагглютинирующими, непреципитирующими или блокирующими антителами (см. главу 13).

11.1.4. Антигенность антител

Иммуноглобулин, как и всякий белок, обладает антигенностью и выраженной иммуногенностью. В молекуле Ig различают 4 типа атигенных детерминант: видовые, изотипические, аллотипические и идиотипические. Видовые антигенные детерминанты характерны для Ig всех особей данного вида (например, кролика, собаки, человека). Они определяются строением легкой и тяжелой цепей. По этим детерминантам можно идентифицировать видовую принадлежность антител.

Изотипические антигенные детерминанты являются групповыми. Они локализуются в тяжелой цепи и служат для дифференцировки Ig на 5 изотипов (классов) и множество подклассов (см. раздел 11.1.3).

Аллотипические антигенные детерминанты являются индивидуальными, т.е. присущими конкретному организму. Они располагаются в легкой и тяжелой полипептидных цепях. На основании строения аллотипических детерминант можно различать особи внутри одного вида.

Идиотипические антигенные детерминанты отражают особенности строения антигенсвязывающего центра самой молекулы Ig. Они образованы V-доменами легкой и тяжелой цепей молекулы Ig. Обнаружение идиотипических антигенных детерминант послужило основанием для создания теории идиотип-антиидиотипической регуляции биосинтеза антител.

11.1.5. Механизм взаимодействия антитела с антигеном

В процессе взаимодействия с антигеном принимает участие антигенсвязывающий центр молекулы Ig, или паратоп, который способен связываться со строго определенной антигенной детерми-

нантой. Эта связь осуществляется за счет слабых взаимодействий (ван-дер-ваальсовы силы, водородные связи, злектростатические взаимодействия) и отличается неустойчивостью - образовавшийся иммунный комплекс (ИК) может легко диссоциировать: АГ + АТ ↔ ИК.

Продолжительность существования иммунного комплекса определяется целым рядом факторов. При этом важное значение имеют особенности антитела, антигена и условия, в которых происходит их взаимодействие. К особенностям антитела следует отнести его аффинность и авидность.

Аффинность - сила специфического взаимодействия антитела с антигеном (или энергия их связи). Аффинность определяется степенью стерического (пространственного) соответствия эпитопа и паратопа. Чем больше образуется связей между эпитопом и паратопом, тем выше будут устойчивость и продолжительность жизни образовавшегося иммунного комплекса. Иммунный комплекс, образованный низкоаффинными антителами, чрезвычайно неустойчив и имеет малую продолжительность существования.

Установлено, что в условиях макроорганизма с одной и той же антигенной детерминантой способны одновременно прореагировать и образовать иммунный комплекс около 100 различных клонов антител. Все они будут отличаться структурой антигенсвязывающего центра, специфичностью и аффинностью. Аффинность антител существенно меняется в процессе иммунного ответа в связи с селекцией наиболее специфичных клонов В-лимфоцитов. Наименее аффинными считаются нормальные антитела. По расчетам общее количество различных антигенспецифических клонов В-лимфоцитов достигает 10 6 -10 7 .

Другой характеристикой Ig является авидность. Под этим термином понимают прочность связывания антитела и антигена. Эта характеристика определяется аффинностью Ig и числом антигенсвязывающих центров. Наибольшей авидностью обладают антитела класса М, так как они имеют 10 антигенсвязывающих центров.

Эффективность взаимодействия антитела с антигеном существенно зависит от условий, в которых происходит реакция, прежде всего от pH среды, осмотической плотности, солевого состава и температура среды. Оптимальными для реакции антиген-антитело являются физиологические условия внутренней среды макроорганизма: близкая к нейтральной реакция среды, присутствие фос-

фат-, карбонат-, хлорид- и ацетат-ионов, осмолярность физиологического раствора (концентрация раствора 0,15 М), а также температура 36-37 °С.

11.1.6. Свойства антител

Благодаря уникальной способности специфически связываться с антигенными детерминантами антитела выполняют в организме ряд важнейших функций.

К прямым эффектам антител относится нейтрализация - связывание и блокирование паратопом иммуноглобулина активного центра биологически активной молекулы, например токсина, рецептора, лекарственного препарата и пр. Эффект имеет обратимый характер в случае распада иммунного комплекса. На этом принципе основан механизм действия антитоксических, противовирусных и многих других лечебных иммунных сывороток.

Другим прямым эффектом является энзиматическое действие антител. Благодаря реликтовой протеазной или нуклеазной активности (см. раздел 11.1.3) иммуноглобулины способны вызывать деструкцию молекулы антигена (например, расщепление отдельных пептидов или ДНК). Запуск системы комплемента по классическому пути также представляет собой результат ферментолиза.

В большинстве случаев взаимодействие антител с антигеном в организме не влечет за собой его структурную или функциональную модификацию. Прочно связываясь с эпитопом, антитела маркируют молекулу антигена - обозначают его как мишень для других факторов иммунитета (фагоцитоз, лизис).

К непрямым эффектам относятся:

Индукция комплементопосредованного лизиса чужеродных клеток (см. раздел 9.2.3.3), наилучшими свойствами обладает IgM (IgM > IgG3 > IgG1);

Запуск антителозависимой клеточно-опосредованной цитотоксичности АЗКЦТ (см. раздел 11.3.);

Индукция гиперчувствительности немедленного, или I, типа (см. раздел 11.4);

Опосредование иммунного фагоцитоза (см. раздел 11.2).

Клеточно-опосредованные эффекты иммуноглобулинов реализуются благодаря экспрессии на мембране иммунокомпетентных клеток рецепторов к Fc-фрагменту молекулы иммуноглобулина (FcR). Эти рецепторы являются трансмембранными белковыми

молекулами и различаются по специфичности к определенному изотипу тяжелой цепи молекулы Ig. Различают также высокоаффинные и низкоаффинные FcR. Первые могут взаимодействовать с интактной молекулой иммуноглобулина. В некоторых случаях она используется как ко-рецепторный фактор (базофилы, тучные клетки). Низкоаффинные FcR связываются уже с иммунным комплексом, их называют непрямыми иммунорецепторами.

Помимо эффекторных свойств, антитела являются активными регуляторами иммунореактивности. Так, Ig являются антигенспецифическими рецепторами В-лимфоцитов.

Специфическое связывание эпитопов специфическими антителами может блокировать развитие как гуморального, так и клеточного иммунного ответа. Этот эффект используется в клинической практике, например, для профилактики гемолитической болезни новорожденных в результате резус-конфликта. Антитела, специфичные к идиотипическим антигенным детерминантам Ig, могут управлять силой антительного иммунного реагирования.

11.1.7. Генетика иммуноглобулинов

Для структуры молекул Ig характерно уникальное генетическое кодирование. Методами молекулярной генетики было доказано, что структура молекулы Ig контролируется большим числом генов, которые имеют фрагментарную организацию, образуют три группы, располагаются в трех различных хромосомах и наследуются независимо.

Первая группа генов кодирует первичную структуру легкой цепи λ-типа, вторая - легкой цепи κ-типа, а третья - всех типов тяжелых цепей (α, δ, ε, γ и μ). Гены, относящиеся к каждой группе, находятся на соответствующей хромосоме в непосредственной близости друг от друга, располагаются последовательно (рис. 11.3) и разделены интронами.

Участок ДНК, кодирующий строение легкой цепи λ-типа, содержит 2 V-сегмента (контролируют структуру V-доменов) и 4 C-сегмента (контролируют структуру C-доменов). Между C- и V-сегментами располагается J-сегмент (от англ. join - соединяющий). Легкая цепь κ-типа кодируется несколькими сотнями V-сегментов ДНК, 4 J-сегментами и одним C-сегментом. Группа генов, контролирующая структуру тяжелых цепей, имеет еще более сложное строение. Наряду с V-, C- и J- сегментами ДНК

Рис. 11.3. Схема строения генов иммуноглобулинов (пояснение в тексте)

в их состав входят 20 D-сегментов (от англ. divercity - разнообразие). Кроме того, имеется M-сегмент, который кодирует биосинтез мембраноассоциированного участка молекулы рецепторного Ig.

Созревание пре-В-лимфоцитов сопровождается перестройками в их генетическом аппарате. Происходят произвольное сближение отдельных фрагментов ДНК и сборка в пределах соответствующих хромосом единых функциональных генов. Этот процесс называется сплайсинг (от англ. splicing - сращивание, состыковывание). Пропущенные участки ДНК исключаются из дальнейшего считывания. С функциональных генов в дальнейшем транскрибируется про-мРНК, а затем окончательная мРНК, кодирующая первичную аминокислотную последовательность L- и H-цепей молекулы Ig. Параллельно со сплайсингом в отдельных участках V-сегментов генов иммуноглобулинов могут происходить точечные мутации и нематричная достройка олигонуклеотидов. Эти участки ДНК получили название гипермутабельных областей.

Сплайсинг и мутационный процесс в генах Ig носят случайный характер. Они происходят в каждом лимфоците независимо друг от друга и уникальны, что в бесконечное количество раз повышает разнообразие V-доменов и в конечном счете структуры паратопов и идиотипических антигенных детерминант молекулы Ig. Поэтому в организме всегда существуют или в любой момент могут появиться В-лимфоциты, специфичные практически к любому антигену. Этот тезис составляет основу молекулярно-генетической теории

происхождения многообразия специфичностей антител, разработанной С. Тонегавой (1983).

В процессе первичного иммунного ответа размножение В-лимфоцитов также сопровождается рекомбинационными перестройками в пределах иммуноглобулиновых генов, но уже в пределах С-сегментов. Это проявляется последовательной сменой класса Ig: на ранних этапах дифференцировки В-лимфоциты синтезируют Ig классов М и D, на более поздних - классов G, A или E (редко).

11.1.8. Динамика антителопродукции

Иммунная система реагирует на появление во внутренней среде макроорганизма антигена усилением биосинтеза специфических антител. Это достигается размножением клонов антигенспецифических клеток-антителопродуцентов. При этом антиген выступает в роли как пускового, так и селектирующего фактора: преимущественно активируются клоны с наивысшей специфичностью, т.е. наибольшей аффинностью рецепторных молекул Ig. Параллельно с размножением идет процесс дифференцировки В-лимфоцитов. Наблюдаются перестройка в геноме клеток и переключение их биосинтеза с крупной высокоавидной молекулы IgM на более легкие и экономичные высокоаффинные IgG или IgA.

Антителопродукция в ответ на антигенный стимул имеет характерную динамику. Ее можно проследить на примере сывороточных Ig (рис. 11.4). Выделяют латентную (индуктивную), логарифмическую, стационарную фазы и фазу снижения. В латентную фазу антителопродукция практически не изменяется и остается на базальном уровне. В этот период происходят переработка и представление антигена иммунокомпетентным клеткам и запуск пролиферации антигенспецифических клонов клетокантителопродуцентов. Ввиду того что клетки делятся дихотомически (т.е. надвое), прирост их количества происходит в логарифмической зависимости и поэтому после первых циклов деления оно изменяется незначительно. Параллельно происходят дифференцировка пре-В-лимфоцитов в зрелые формы и плазматические клетки и переключение синтезируемых изотипов Ig. Во время логарифмической фазы наблюдается интенсивный прирост количества

Рис. 11.4. Динамика антителообразования при первичном (I) и вторичном (II) иммунном ответах. Фазы антителообразования: а - латентная; б - логарифмического роста; в - стационарная; г - снижения

антигенспецифических В-лимфоцитов, что находит отражение в существенном нарастании титров специфических антител. В стационарной фазе количество специфических антител и синтезирующих их клеток достигает максимума и стабилизируется. Освобождение макроорганизма от антигена устраняет антигенный стимул, поэтому в фазе снижения наблюдается постепенное уменьшение количества клонов специфических антителопродуцентов и титров соответствующих антител.

Динамика антителообразования существенно зависит от первичности или вторичности контакта с антигеном. При первичном контакте с антигеном развивается первичный иммунный ответ. Для него характерны длительные латентная и логарифмическая (7-15 сут) фазы. Первые диагностически значимые титры специфических антител регистрируются на 10-14-е сутки от момента иммунизации. Стационарная фаза продолжается 15-30 сут, а фаза снижения - 1-6 мес.

В течение первичного иммунного ответа происходят созревание, размножение клонов и дифференцировка антигенспецифических В-лимфоцитов, а также переключение биосинтеза Ig с изотипа M на изотопы G, A или Е. В итоге первичного иммунного реагирования формируются многочисленные клоны антигенспецифических антителопродуцирующих клеток и клеток иммуноло-

гической памяти, а во внутренней среде макроорганизма в высоком титре накапливаются специфические IgG и/или IgA. Таким образом обеспечиваются активное противодействие иммунной системы внедрению в макроорганизм антигена и высокая готовность к повторной с ним встрече.

Со временем антительный ответ угасает. Элиминация антигена исключает новое стимулирование к клонообразованию, а появившиеся ранее плазматические клетки имеют короткую продолжительность жизни. Вместе с тем В-лимфоциты иммунологической памяти надолго остаются циркулировать в организме.

Повторный контакт иммунной системы с тем же антигеном ведет к формированию вторичного иммунного ответа (см. рис. 11.4). Его латентная фаза значительно укорочена, а логарифмическая фаза отличается более интенсивной динамикой прироста и более высокими титрами специфических антител. Для стационарной фазы и фазы снижения свойственна затяжная динамика (несколько месяцев или даже лет). При вторичном иммунном ответе организм сразу же в подавляющем большинстве синтезирует IgG. Это обусловлено подготовленностью иммунной системы к повторной встрече с антигеном за счет формирования иммунологической памяти (см. раздел 11.5): многочисленные клоны антигенспецифических В-лимфоцитов, оставшиеся после первичного иммунного реагирования, быстро размножаются и интенсивно включаются в процесс антителогенеза.

Для развития гуморального иммунитета слизистых оболочек характерны те же процессы и динамика антителообразования. Однако в данном случае в слизистых оболочках в подавляющем большинстве созревают и размножаются В-лимфоциты, продуцирующие полимерные молекулы IgA.

Явление интенсивного антителообразования при повторном контакте с антигеном широко используется в практических целях, например вакцинопрофилактике . Для создания и поддержания иммунитета на высоком защитном уровне схемы вакцинации предусматривают многократное введение антигена для формирования и поддержания иммунологической памяти (см. главу 14).

Этот же феномен используют при получении высокоактивных лечебных и диагностических иммунных сывороток (гипериммунных). Для этого животным или донорам производят многократные введения препаратов антигена по специальной схеме.

Динамика и интенсивность антителообразования в значительной степени зависят от иммуногенности антигена: дозы, способа и кратности его введения, а также от состояния макроорганизма. Попытка повторного введения антигена в латентной фазе может привести к иммунологическому параличу - иммунологической неотвечаемости на антиген в течение определенного периода времени.

11.1.9. Теории разнообразия антител

Для объяснения механизмов антителопродукции и разнообразия специфичности антител было предложено множество гипотез и теорий. Только немногие из них получили практическое подтверждение, большинство представляет исторический интерес.

Первую принципиально важную концепцию боковых цепей выдвинул П. Эрлих (1898). Согласно этой концепции, клетки органов и тканей имеют на своей поверхности рецепторы, способные в силу химического сродства связывать антиген и инактивировать его. Затем они отделяются с поверхности клетки и замещаются вновь синтезированными. Эта теория заложила основные представления о гуморальном иммунитете и рецепторах иммунокомпетентных клеток.

Заслуживают внимания инструктивные или матричные теории. Согласно концепциям, предложенным Ф. Брейнлем и Ф. Гауровитцем (1930), Л. Полингом (1940), антиген является матрицей, с которой штампуется молекула антител. Эти теории оказались тупиковыми в связи с открытием Д. Уотсоном и Ф. Криком (1953) механизма кодирования в ДНК генетической информации.

Ряд теорий исходил из предположения о предсуществовании в организме антител практически ко всем возможным антигенам (Ерне Н., 1955; Бернет Ф., 1959). В настоящее время наиболее обоснованной считается теория Ф. Бернета, которая получила название клонально-селекционной. Согласно данной теории, лимфоидная ткань состоит из огромного числа клонов антигенореактивных лимфоцитов, которые специализируются на выработке антител к определенным антигенам. Клоны уже предсуществуют в новорожденном организме. Попавший в организм антиген селективно (избирательно) активирует специфичный к нему клон лимфоцитов, который размножается и начинает вырабатывать специфичные к данному антигену антитела. Если доза антигена слишком велика,

то клон реагирующих на него лимфоцитов устраняется (элиминируется) из организма - так в эмбриональном периоде формируется иммунологическая толерантность (нечувствительность) к собственным антигенам.

Теория Бернета объясняет многие иммунологические реакции (антителообразование, гетерогенность антител, иммунологическую память, толерантность), однако она не способна объяснить происхождение всего многообразия специфичности антител. Бернет предположил, что в организме существует около 10 тыс. клонов специфических антителопродуцирующих клеток. Однако мир антигенов оказался на 2-3 порядка обширнее, и организм отвечает на практически любой из них, в том числе и на искусственно полученный, несуществующий в природе.

Значительную ясность в представление о разнообразии специфичности антител внес С. Тонегава (1983), который дал этому явлению генетическое обоснование. Молекулярно-генетическая теория С. Тонегавы исходит из того, что в генах иммуноглобулинов постоянно происходят мощные рекомбинационные и мутационные процессы. В результате возникает огромное количество вариантов и комбинаций генов, которые кодируют разнообразные специфичности иммуноглобулинов. Каждый клон антителопродуцирующих лимфоцитов обладает своим уникальным вариантом гена иммуноглобулина (см. раздел 11.1.7).

Следует также упомянуть теорию сетевой регуляции иммунной системы. Ее основой является выдвинутая Н. Ерне (1974) идея идиотип-антиидиотипического взаимодействия. Согласно этой теории, иммунная система представляет собой бесконечную цепь взаимодействующих антигенных идиотипов иммуноглобулинов и направленных к ним антиидиотипических антител. Введение антигена вызывает каскадную реакцию образования антител 1-го порядка. Это антитело, действуя как антиген, вызывает образование к своему идиотипу антител 2-го порядка. К идиотипу антител 2-го порядка синтезируются антитела 3-го порядка и т.д. При этом антитело каждого порядка как бы несет внутренний образ антигена, который передается эстафетно в цепи образования антиидиотипических антител. Доказательством этой теории являются обнаружение антиидиотипических антител, способных вызвать в организме иммунитет к соответствующему антигену, а также существование лимфоцитов, сенсибилизированных к антиидиотипическим анти-

телам. С помощью теории Ерне можно понять формирование иммунологичской памяти и возникновение аутоиммунных реакций. Однако она не способна объяснить много других явлений иммунитета: механизм иммунологического распознавания «свой-чужой», управления каскадом идиотип-антиидиотипических реакций и т.д. Данная теория не получила дальнейшего развития.

Выдающийся отечественный иммунолог П.Ф. Здродовский в 60-е годы XX столетия сформулировал физиологическую концепцию иммуногенеза - гипоталамо-адреналовую теорию регуляции иммунитета. Основная идея его теории сводилась к тому, что продукция антител подчиняется общим физиологическим законам. Ведущая роль в этом процессе принадлежит гормонам и нервной системе.

11.2. Иммунный фагоцитоз

Феномен иммунного фагоцитоза основан на поглощении фагоцитами (см. раздел 9.2.2) антигенов, входящих в состав иммунных комплексов. При этом антигенами могут быть как отдельные молекулы или их агрегаты, так и цельные клетки или их обломки. Для осуществления иммунного фагоцитоза необходимо участие молекул иммуноглобулинов и/или комплемента, а также рецепторов к Fc-участку молекулы иммуноглобулина и компонентам комплемента на клеточной мембране фагоцитирующей клетки. Рецепторы обеспечивают узнавание и захват фагоцитом иммунных комплексов или опсонизированных антигенов, которые потом эндоцитируются. Таким образом фагоциты участвуют в элиминации (удалении) антигенов из организма и восстановлении его гомеостаза.

11.3. Опосредованный клетками киллинг

Иммунная система располагает независимым от системы комплемента способом уничтожения чужеродных клеток. Эта форма иммунного реагирования осуществляется непосредственно клетками-киллерами и получила название «опосредованный клетками киллинг». Киллинг способны осуществлять активированные фагоциты, Т-киллеры, естественные киллеры и некоторые другие клетки. Клетки-киллеры осуществляют санацию организма от чужеродных, трансформированных или инфицированных клеток.

Механизм клеточно-опосредованного киллинга достаточно универсален. Киллеры вырабатывают ряд веществ, которые вызывают нарушение целостности клеточной мембраны (или стенки) или индуцируют апоптоз. Они осуществляют свою функцию дистантно (на расстоянии) или при непосредственном контакте. Мишенью для них являются раково-трансформированные, мутантные или зараженные вирусами клетки, грибы, простейшие, гельминты, некоторые бактерии и другие чужеродные клетки.

Способ распознавания киллерами генетической чужеродности клеток-мишеней определяется типом его антигенсвязывающего рецептора. Различают антителозависимую и антителонезависимую клеточно-опосредованную цитотоксичность.

11.3.1. Антителозависимая клеточно-опосредованная цитотоксичность

АЗКЦТ реализуется благодаря экспрессии на мембране иммунокомпетентных клеток рецепторов к Fc-фрагменту молекулы иммуноглобулина (FcR). Эти рецепторы являются трансмембранными белковыми молекулами и специфичны к определенному изотипу тяжелой цепи молекулы Ig, связанной в иммунный комплекс. Поэтому распознавание чужеродных клеток происходит при помощи FcR по антителам, которые предварительно связались с поверхностными антигенами клеток-мишеней. АЗКЦТ могут осуществлять активированные макрофаги, естественные киллеры и эозинофилы.

Активированные макрофаги (см. раздел 9.2.2) продуцируют перекисные и NO ион-радикалы и ферменты, которые могут поражать мембрану (или стенку) клетки после ее фагоцитирования.

токсичные факторы (ферменты и белковые токсины) и синтезируют цитокины, стимулирующие клеточное звено иммунитета, и липидные медиаторы воспаления.

11.3.2. Антителонезависимая клеточно-опосредованная цитотоксичность

АНКЦТ осуществляется без участия молекулы Ig клетками лимфоидного ряда, несущими иммунорецепторы прямого распознавания. К этой группе клеток относятся Т-киллеры, естественные киллеры с фенотипом СБ16 - СБ56 много и Т-хелперы.

Основной клеткой, использующей этот тип механизма, является Т-киллер (αβ-тип), который при помощи TCR анализирует структуру MHC I класса на мембране клеток собственного организма и определяет его аллогенность. Контакт зрелого активированного Т-киллера с чужеродной клеткой-мишенью запускает их цитотоксические механизмы: осмотический лизис (перфорин) и индукцию апоптоза (гранзимы).

Киллинг клетки-мишени осуществляется в несколько этапов.

Установление плотного контакта. Т-киллер прикрепляется к поверхности клетки-мишени, между клетками образуется тесный контакт, или интерфейс, с узким синаптическим пространством.

Активация Т-киллера. TCR эффектора анализирует комплекс MHC I класса. В случае установления его чужеродности Т-киллер активируется и начинает синтезировать токсичные субстанции, которые накапливаются в гранулах. Для обеспечения строго направленного действия происходит полярное перераспределение внутриклеточных органелл киллера: гранулы, содержащие токсичные субстанции, и аппарат Гольджи перемещаются в сторону контакта.

Экзоцитоз токсических субстанций. Содержимое гранул выделяется в узкое синаптическое пространство между клетками путем экзоцитоза.

Токсическое воздействие. В результате воздействия перфорина в мембране клетки-мишени образуются поры, способные вызвать осмотический лизис. Через поры внутрь клетки проникают гранзимы и гранулизин, которые запускают апоптоз.

Точный механизм специфического распознавания Т-киллером мембранных антигенов клетки-мишени и направленный токси-

ческий удар предотвращают ошибочный лизис собственных нормальных клеток.

Естественные киллеры, имеющие фенотип СБ16 - СБ56 много, получили название тканевых, так как они не циркулируют в организме, а накапливаются в определенных зонах: портальных воротах печени, децидуальной оболочке беременной матки и других органах, содержащих забарьерные антигены. Мишенью для этих киллеров являются активированные лимфоциты, для которых характерен синтез в большом количестве Fas- рецептора. Экспрессируемый на клеточной мембране тканевых естественных киллеров Fas -лиганд связывается с Fas -рецептором и индуцирует в активированном лимфоците апоптоз. Описанный механизм цитотоксичности позволяет элиминировать из организма лимфоциты, позитивно прореагировавшие на пищевые, эмбриональные и забарьерные аллоантигены. Это позволяет избежать развития пищевой аллергии, невынашивания беременности или аутоиммунного поражения тканей.

Подобный эффект также свойствен T-киллерам и Т 1 -хелперам. Элиминация активированных лимфоцитов путем индукции в них апоптоза - один из эффективных путей иммунорегуляции в периферических тканях.

11.4. Реакции гиперчувствительности

В ряде случаев введение антигена в организм может индуцировать аномальную реакцию, которая имеет черты патологического процесса. Эта форма реагирования, основу которой составляют естественные физиологические механизмы, получила название аллергии (от греч. allos - иной и ergon - действие). Антигены, вызывающие аллергические реакции, получили название аллергенов, а наука, которая изучает аллергию, называется аллергологией.

Понятие «аллергия» было предложено французским ученым К. Пирке (1906). Он понимал аллергию как измененную реакцию макроорганизма на повторное введение антигена и относил к ней как гипер-, так и гипореактивность. По современному определению, аллергия - это повышенная извращенная специфическая реакция макроорганизма на повторный контакт организма с аллергеном.

Для формировании аллергии необходима предварительная сенсибилизация макроорганизма к аллергену, или аллергизация. Ее можно вызвать очень малыми, субиммунизирующими дозами ан-

тигена (например, введением морской свинке 0,000001 мл лошадиной сыворотки), которые получили название сенсибилизирующих. Повторное введение того же антигена через определенный промежуток времени вызывает аллергическую реакцию. Дозу антигена, вызывающую собственно аллергическую реакцию, называют разрешающей.

В развитии аллергической реакции выделяют три стадии: иммунологическую, патохимическую и патофизиологическую. В течение иммунологической стадии в ответ на аллерген образуются антигенчувствительные клетки, специфические антитела и иммунные комплексы. Патохимическая стадия характеризуется образованием медиаторов воспаления и биологически активных аминов, которые играют основную роль в механизме аллергических реакций. В течение патофизиологической стадии проявляется клиническая картина аллергической реакции. Как правило, клинические проявления аллергии полиморфны.

Первая классификация аллергий была предложена Р. Куком в 1947 г. В ее основу было положено время развития аллергической реакции. Была выделена гиперчувствительность немедленного типа (ГНТ) и гиперчувствительность замедленного типа (ГЗТ). Сравнение свойств ГНТ и ГЗТ представлено в табл. 11.2.

Таблица 11.2. Свойства ГНТ и ГЗТ (по Куку, 1947)

К ГНТ были отнесены аллергические реакции, проявляющиеся уже через 20-30 мин после повторной встречи с аллергеном, тогда как реакции ГЗТ возникают через 6-8 ч и позже. Механизмы ГНТ связаны с выработкой специфических антител (опосредованы В-звеном иммунитета). ГНТ можно перенести от больного здоро-

вому введением специфических антител или клона антигенреактивных В-лимфоцитов. Возможна специфическая десенсибилизация пациента. ГЗТ опосредована клеточным звеном иммунитета. Перенос аллергизации от больного здоровому возможен только с лейкоцитарным пулом. Специфическая терапия, как правило, оказывается неэффективной.

ГНТ была описана в 1902-1905 гг. французскими учеными Ш. Рише и Ж. Портье и русским ученым Г.П. Сахаровым. Они показали, что ГНТ имеет стереотипное течение, которое может заканчиваться смертью. Она может проявляться в виде анафилаксии, атопических болезней, сывороточной болезни, феномена Артюса (см. раздел 12.4.3). Явление ГЗТ было установлено Р. Кохом (1890). Этот тип аллергии может протекать в виде контактной аллергии, реакции на кожно-аллергическую пробу, замедленной аллергии к белкам.

Изучение молекулярных механизмов аллергии привело к созданию Джеллом и Кумбсом в 1968 г. новой классификации. В соответствии с ней различают 4 основных типа аллергии: анафилактический (I тип), цитотоксический (II тип), иммунокомплексный (III тип) и опосредованный клетками (IV тип). Первые три типа относятся к ГНТ, четвертый к ГЗТ. Сравнительная характеристика механизмов указанных типов аллергии приведена в табл. 11.3.

Таблица 11.3. Классификация аллергических реакций по патогенезу (по Джеллу и Кумбсу, 1968)

Окончание табл. 11.3

Примечание. Более подробное описание аллергических болезней см. в разделе 12.4.3 .

Ведущую роль в запуске ГНТ играют антитела (IgE, G и M), а ГЗТ - лимфоидно-макрофагальная реакция.

Аллергическая реакция I типа связана с IgE и G4, названных реагинами. Они обладают цитофильностью - сродством к тучным клеткам и базофилам: соединение IgE или G4 с высокоаффинным FcR на поверхности этих клеток формирует специфический рецепторный комплекс, связывание с которым аллергена вызывает дегрануляцию базофила и тучной клетки - залповый выброс биологически активных соединений (гистамин, гепарин и др.), содержащихся в гранулах, в межклеточное пространство. Действие этих веществ практически мгновенно, но кратковременно, включает

ряд органотканевых патофизиологических реакций, связанных с сокращением гладкой мускулатуры кишечника, бронхов, мочевого пузыря и активацией секреторных, эндотелиальных и некоторых других клеток. В результате развиваются бронхоспазм, вазодилатация, отек и прочие симптомы, характерные для анафилаксии. Вырабатываемые цитокины стимулируют клеточное звено иммунитета к образованию Т 2 -хелперов и эозинофилогенез.

Наиболее ярко аллергическая реакция I типа проявляется клинической картиной анафилактического шока. Инъекция сыворотки крови больного аллергией I типа здоровому лицу переносит ему специфический реагин и делает на определенное время сенсибилизированным. На этом феномене основан механизм пробы Прауснитца-Кюстнера, ранее использовавшейся для диагностики аллергии: контакт тест-пациента с аллергеном вызывал у него анафилаксию.

Аллергическая реакция II типа предполагает наличие цитотоксических антител (IgG, IgM), направленных к поверхностным структурам (антигенам) соматических клеток макроорганизма. Эти антитела связываются с клеточными мембранами клеток-мишеней и запускают различные механизмы антителозависимой цитотоксичности, которая сопровождается соответствующими клиническими проявлениями. Классическим примером является гемолитическая болезнь в результате резус-конфликта или переливания иногруппной крови.

Аллергическая реакция III типа обусловлена цитотоксическим действием избыточного количества иммунных комплексов, образующихся в организме пациента в большом количестве после введения массивной дозы антигена. Чрезмерное количество циркулирующих иммунных комплексов не может быть быстро утилизировано стандартными механизмами фагоцитирующих клеток. Фиксируясь на эндотелии сосудов и клубочков почек, в других тканях, иммунные комплексы инициируют АЗКЦТ, сопровождающуюся воспалительной реакцией. Клинические проявления аллергической реакции III типа, как правило, имеют отсроченную манифестацию, иногда на срок более 7 сут. Тем не менее этот тип реакции относят к ГНТ. Реакция может проявляться как одно из осложнений применения иммунных гетерологичных сывороток с лечебно-профилактической целью (сывороточная болезнь), а также при вдыхании белковой пыли («легкое фермера»).

ГЗТ представляет собой лимфоидно-макрофагальную реакцию, которая развивается в результате активации макрофагов под влиянием лимфоцитов, сенсибилизированных к аллергену. Основу ГЗТ составляют нормальные механизмы иммунного воспаления. Активация макрофага возможна в результате контактного или цитокинового воздействия. Контактная стимуляция - результат рецептор-лигандного взаимодействия макрофага, несущего рецепторную молекулу СD40, и Т 1 -хелпера, экспрессирующего СD40-лиганд. В исключительных случаях эту функцию может выполнять Т 2 -хелпер. Цитокиновая активация макрофага осуществляется γ-ИФН, который продуцируют Т 1 -хелперы, Т-киллеры или естественные киллеры. Кроме того, макрофаг может быть стимулирован ЛПС (через СD14-рецепторную молекулу). Ингибиторами активации макрофага являются иммуноцитокины Т 2 - хелпера: ИЛ-4, 10, 13 и др. Активация макрофага резко повышает его эффективность в осуществлении АЗКЦТ и иммунного фагоцитоза, т.е. деструкции и элиминации антигена (см. также раздел 12.4.3).

Лечение аллергии основано на десенсибилизации макроорганизма путем индукции низкодозовой иммунологической толерантности (см. раздел 11.6), а также устранения аллергена из организма плазмаферезом, гемосорбцией, введением иммунных сывороток. В тяжелых случаях применяют глюкокортикоидную терапию.

Реакции гиперчувствительности имеют также большое значение и в норме. Их механизмы лежат в основе воспаления, которое способствует локализации инфекционного агента или иного антигена в пределах определенных тканей и формированию полноценной иммунной реакции защитного характера.

Реакции гиперчувствительности следует отличать от иммунного реагирования гиперергического типа, которое может быть обусловлено как вариациями нейрогуморальной регуляции, так и некоторыми врожденными особенностями. Например, новозеландскую черную линию мышей от рождения отличает гипериммуноглобулинемия, а среди рыжеволосых людей часто наблюдается эозинофилия.

11.5. Иммунологическая память

При повторной встрече с антигеном организм в норме формирует вторичный иммунный ответ - более активную и быструю иммунную реакцию. Этот феномен получил название иммунологической памяти. Иммунологическая память имеет высокую специфичность для конкретного антигена, распространяется как на гуморальное, так и клеточное звено иммунитета, обусловлена В- и Т-лимфоцитами и длительно сохраняется годами. Иммунологическая память - надежная гарантия защиты организма от повторных антигенных интервенций.

Существует два механизма формирования иммунологической памяти. Один из них предполагает длительное сохранение антигена в организме, что поддерживает в напряжении иммунную систему. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены. Вероятно также наличие долгоживущих дендритных АПК, способных длительно сохранять и презентировать антиген.

Другой механизм предусматривает образование специальных клеток иммунологической памяти в процессе развития в организме продуктивного иммунного ответа. Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет). Они активно рециркулируют в организме, распределяясь в тканях и органах, что обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его дительное время на защитном уровне. Осуществляют это 2-3-кратными прививками при первичной вак-

цинации и периодическими повторными введениями вакцинного препарата - ревакцинациями (см. главу 14).

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию - криз отторжения.

11.6. Иммунологическая толерантность

Иммунологическая толерантность - отсутствие специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания. В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность к определенному антигену.

Собственно феномен иммунологической толерантности был открыт в 1953 г. независимо чешским ученым М. Гашеком и группой английских исследователей во главе с П. Медаваром. Гашек в опытах на куриных эмбрионах, а Медавар на новорожденных мышах показали, что организм становится нечувствительным к антигену при его введении в эмбриональном или раннем постнатальном периоде.

Иммунологическую толерантность вызывают антигены, которые получили название толерогенов. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность бывает врожденной и приобретенной. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума.

Иммунологическая толерантность отличается специфичностью - она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная иммунологическая толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена. Так, на проявление толерантности влияют возраст и состояние иммунореактивности организма. Иммунологическую толерантность легче индуцировать в эмбриональном периоде и в первые дни после рождения, лучше всего она проявляется у животных со сниженной иммунореактивностью и с определенным генотипом.

Успешность индукции иммунологической толерантности зависит от степени чужеродности антигена для организма, его природы, дозы препарата и продолжительности воздействия антигена на организм. Наибольшей толерогенностью обладают наименее чужеродные по отношению к организму антигены, имеющие малую молекулярную массу и высокую гомогенность. Легче всего формируется толерантность на тимуснезависимые антигены, например бактериальные полисахариды.

Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. При этом наблюдается прямая зависимость между дозой вещества и производимым им эффектом. Низкодозовая толерантность, наоборот, вызывается очень малым количеством высокогомогенного молекулярного антигена. Соотношение доза-эффект в этом случае имеет обратную зависимость.

В эксперименте толерантность возникает через несколько дней, а иногда часов после введения толерогена и, как правило, проявляется в течение всего времени, пока он циркулирует в организме. Эффект ослабевает или прекращается с удалением из организма толерогена. Обычно иммунологическая толерантность наблюдается непродолжительное время - всего несколько дней. Для ее пролонгирования необходимы повторные инъекции препарата.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятных причины развития иммунологической толерантности: элиминация из организма антигенспецифических клонов лимфоцитов; блокада биологической активности иммунокомпетентных клеток; быстрая нейтрализация антигена антителами.

Элиминации, или делеции, подвергаются, как правило, клоны аутореактивных Т-лимфоцитов на ранних стадиях их онтогене-

за. Активация антигенспецифического рецептора TCR незрелого лимфоцита индуцирует в нем апоптоз. Этот феномен, обеспечивающий в организме ареактивность к аутоантигенам, получил название центральной толерантности. Локальную толерантность к забарьерным антигенам обеспечивают тканевые естественные киллеры, устраняющие сенсибилизированные к этим антигенам Т-лимфоциты.

Основная роль в блокаде биологической активности иммунокомпетентных клеток принадлежит иммуноцитокинам. Воздействуя на соответствующие рецепторы, они способны вызвать ряд негативных эффектов. Например, пролиферацию Т- и В-лимфоцитов активно тормозит β-ТФР. Дифференцировку Т0-хелпера в Т 1 можно заблокировать при помощи ИЛ-4, 13, а в Т 2 -хелпер - γ-ИФН. Биологическая активность макрофагов ингибируется продуктами Т 2 -хелперов (ИЛ-4, 10, 13, β-ТФР и др.).

Биосинтез в В-лимфоците и его превращение в плазмоцит подавляются свободно циркулирующими IgG. Быстрая инактивация молекул антигена антителами предотвращает их связывание с рецепторами иммунокомпетентных клеток - элиминируется специфический активирующий фактор. Возможен адоптивный перенос иммунологической толерантности интактному животному путем введения ему иммунокомпетентных клеток, взятых от донора.

Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких, как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.

Толерантность можно искусственно отменить. Для этого необходимо активировать иммунную систему адъювантами, интерлейкинами или переключить направленность ее реакции иммунизацией модифицированными антигенами. Другой путь - удалить из организма толероген, сделав инъекцию специфических антител или путем иммуносорбции.

Задания для самоподготовки (самоконтроля)

A. Назовите класс Ig, который проходит через плаценту:

Б. Назовите класс Ig, который является показателем острой инфекции:

B. Назовите класс Ig, который обеспечивает местный иммунитет:

Г. Отметьте свойства, характерные для IgE:

1. Связывает комплемент.

2. Обладает цитофильностью к тучным клеткам и базофилам.

3. Участвует в развитии гиперчувствительности I типа.

4. Проходит через плаценту.

Д. Назовите класс Ig, обладающий наибольшей авидностью:

Е. Назовите клетки, обеспечивающие АЗКЦТ:

1. Кровяные ЕК.

2. Т-киллеры.

3. Эозинофилы.

4. Активированные макрофаги.

Ж. Отметьте типы гиперчувствительости, классифицированные по Джеллу и Кумбсу, в которых принимает участие комплемент:

1. I тип (анафилактичский).

2. II тип (цитотоксический).

3. III тип (иммунокомплексный).

4. IV тип (ГЗТ).

З. Назовите процесс, защищающий организм от повторных антигенных интервенций:

1. Иммунная толерантность.

2. Иммунная память.

3. Гиперчувствительность.

4. Иммунный паралич.

И. К аллергологу обратилась пациентка, у которой через 48 ч после употребления косметического крема кожа лица воспалилась и на ней появились везикулы. Этим кремом пациентка пользовалась и ранее. Врач диагностировал развитие контактной гиперчувствительности. Объясните механизм развития контактной гиперчувствительности. Назовите тип, к которому она относится.

К. Резус-отрицательной матери, беременной первой беременностью резус-положительным плодом, сразу после родов была введена антирезус-сыворотка. Объясните необходимость проведения этой врачебной манипуляции.

Л. Иммунная толерантность проявляется отсутствием специфического продуктивного иммунного ответа на антиген в связи с неспособностью его распознавания. Назовите антигены, к которым легче всего формируется толерантность.

Строение иммуноглобулинов

По своему химическому строению иммуноглобулины - это глико-протеиды.

По физико-химическим и антигенным свойствам иммуноглобули­ны делятся на классы: G, M , A, E, D .

Молекула иммуноглобулина G построена из 2 тяжелых (Н-цепей) и 2 легких полипептидных цепей (L-цепей).

Каждая полипептидная цепь состоит из вариабельной (V), ста­бильной (константной, С) и так называемой шарнирной частей.

Тяжелые цепи иммуноглобулинов разных классов построены из разных полипептидов (гамма-, мю-, альфа-, дельта-, эпсилон-пептидов) и потому являются разными антигенами.

Легкие цепи представлены 2 типами полипептидов - каппа- и лямбда-пептидами.

Вариабельные участки значительно короче константных участ­ков. Каждая пара легких и тяжелых полипептидных цепей в их С-частях, а также тяжелые цепи между собой связаны дисуль-фидными мостиками.

Ни тяжелые, ни легкие цепи свойствами антител (взаимодей­ствие с гаптенами) не обладают. При гидролизе папаином мо­лекула иммуноглобулина G распадается на 3 фрагмента - 2 Fab-фрагмента и F с -фрагмент.

Последний представляет собой остатки тяжелых цепей, их константные части. Он не обладает свойством антитела (не взаимодействует с антигеном), но обладает сродством к ком­плементу, способен фиксировать и активировать его. В связи с этим фрагмент и обозначается как F с -фрагмент (фрагмент комплемента). Этот же F с -фрагмент обеспечивает прохождение иммуноглобулинов G через гематоэнцефалический или плацен­тарный барьеры.

Два других фрагмента иммуноглобулина G представляют собой остатки тяжелой и легкой цепи с их вариабельными частями. Они идентичны друг другу и обладают свойством антител (взаимодействуют с антигеном), в связи с этим эти фрагменты и обозначаются как F ab ,-(фрагмент-антитело).

Поскольку ни тяжелые, ни легкие цепи не обладают свойством антитела, но оно выявляется у F а ь-фрагментов, очевидно, что за взаимодействие с антигеном ответственны именно вариа­бельные части тяжелых и легких цепей. Они формируют уни­кальную по строению и пространственной организации струк­туру - активный центр антитела. Каждый активный центр любого иммуноглобулина соответствует детерминантной груп­пе соответствующего антигена как «ключ замку.

Молекула иммуноглобулина G имеет 2 активных центра. По­скольку строение активных центров иммуноглобулинов одного

класса, но разной специфичности неодинаково, то эти молеку­лы (антитела одного класса, но разной специфичности) явля­ются разными антителами. Эти различия обозначаются как идиотипические различия иммуноглобулинов, или идиотипы.

Молекулы иммуноглобулинов других классов построены по тому же принципу, что и IgG, т. е. из мономеров, имеющих 2 тяже­лых и 2 легких цепи, но иммуноглобулины класса М являются пентамерами (построены из 5 таких мономеров), а иммуногло­булины класса А - димерами или тетрамерами.

Количество мономеров, входящих в состав молекулы того или иного класса иммуноглобулина, определяет ее молекулярную массу. Самые тяжелые - это IgM, самые легкие - IgG, вслед­ствие чего они и проходят через плаценту.

Очевидно также то, что иммуноглобулины разных классов имеют разное число активных центров: у IgG их 2, а у IgM - 10. В связи с этим они способны связать разное число молекул антигена, и скорость этого связывания будет различной.

Скорость связывания иммуноглобулинов с антигеном - это их авидность.

Прочность этой связи обозначают как аффинитет.

IgM высокоавидны, но низкоафинны, IgG - наоборот, низко-авидны, но высокоафинны.

Если в молекуле антитела функционирует лишь один актив­ный центр, она может связаться лишь с одной антигенной де-терминантой без последующего образования сетевой структуры комплексов антиген - антитело. Такие антитела называются неполными. Они не дают видимых на глаз реакций, но тормозят реакцию антигена с полными антителами.

Неполные антитела играют важную роль в развитии резус-конфликта, аутоиммунных заболеваний (коллагенозы) и др. и выявляются с помощью реакции Кумбса (антиглобулиновый тест).

Защитная роль иммуноглобулинов разных классов также не одинакова.

Иммуноглобулины класса Е (реагины) реализуют развитие ал­лергических реакций немедленного типа (гиперчувствитель­ность немедленного типа — ГНТ). К F аЬ -фрагментам фиксиро­ванных в тканях реагинов (F с -фрагмент связан с рецепторами тканевых базофилов) присоединяются поступающие в орга­низм аллергены (антигены), что приводит к освобождению биологически активных веществ, запускающих развитие аллер­гических реакций. При аллергических реакциях тканевые базо-филы повреждаются комплексом антиген - антитело и выде­ляют гранулы, содержащие гистамин и другие биологически активные вещества.

Иммуноглобулины класса А могут быть:

  • сывороточными (синтезируются в плазматических клетках селе­зенки, лимфатических узлов, имеют мономерную и димерную структуру молекулы и составляют 80% содержащегося в сыво­ротке IgA);
  • секреторными (синтезируются в лимфатических элементах сли­зистых оболочек).

Последние отличаются наличием секреторного компонента (бета-глобулина), присоединяющегося к молекуле иммуногло­булина при его прохождении через эпителиальные клетки сли­зистой.

Секреторные иммуноглобулины играют существенную роль в ме­стном иммунитете, препятствуя адгезии микроорганизмов на слизистых оболочках, стимулируют фагоцитоз и активируют комплемент, могут проникать в слюну, молозиво.

Иммуноглобулины класса М

первыми синтезируют в ответ на антигенное раздражение. Они способны связывать большое количество антигенов и играют важную роль в формировании антибактериального и антитоксического иммунитета. Большую часть сывороточных антител составляют иммуноглобу­лины класса G, на долю которых приходится до 80% всех им­муноглобулинов. Они образуются на высоте первичного и вто­ричного иммунного ответа и определяют напряженность имму­нитета против бактерий и вирусов. Кроме того, они способны проникать через плацентарный и гематоэнцефалический барьер.

Иммуноглобулины класса D

в отличие от иммуноглобулинов других классов, содержат N-ацетилгалактозоамин и неспособны фиксировать комплемент. Уровень IgD повышается при мие-ломной болезни и хронических воспалительных процессах.

Динамика образования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена и его иммунной системы. Антителообразование протекает в несколько стадий:

1) латентная фаза - происходит переработка и представление антигена иммунокомпетентным клеткам и размножение клона плазматических клеток. Начинается синтез антител. В этом периоде антитела в крови не обнаруживаются;

2) логарифмическая фаза - синтезированные антитела высвобождаются из плазмоцитов и поступают в лимфу и кровь;

3) стационарная фаза - количество антител достигает максимума и стабилизируется;

4) фаза снижения уровня антител.

При первичном введении антигена (первичный иммунный ответ) латентная фаза составляет 3-5 суток, стационарная - 15-30 суток, фаза снижения - 1-6 месяцев и более.

Особенностью первичного иммунного ответа является то, что первоначально синтезируется IgM, затем IgG, а позже IgA.

Основные отличия вторичного ответа от первичного следующие:

Укороченный латентный период (до нескольких часов или 1-2 дня); более быстрый подъем и более высокий уровень концентрации антител (максимальная концентрация увеличивается в 3 раза); медленное снижение уровня антител, иногда в течение нескольких лет; синтезируется главным образом IgG.

Такое различие антителообразования при первичном и вторичном иммунном ответе объясняется тем, что после первичного введения антигена в иммунной системе формируется клон лимфоцитов с иммунологической памятью о данном антигене. После повторной встречи с этим же антигеном клон лимфоцитов с иммунологической памятью быстро размножается и интенсивно включает процесс антителогенеза.

Очень быстрое энергичное антителообразование при повторной встрече с антигеном используется для получения высоких титров антител при производстве диагностических и лечебных сывороток от иммунизированных животных, а также для экстренного создания иммунитета при вакцинации.

18.ХАРАКТЕРИСТИКА ГУМОРАЛЬНОГО И КЛЕТОЧНОГО ИММУННОГО ОТВЕТА.

Принято различать следующие формы иммунного ответа: 1) гуморальный ответ, 2) клеточный ответ, 3) гиперчувствительность немедленного типа, 4) гиперчувствительность замедленного типа; 5) иммунологическая память; 6) иммунологическая толерантность.

Иммунный ответ происходит в результате взаимодействия АПК (дендритных клеток, макрофагов), Т- и В-лимфоцитов, цитокинов. Он включает: 1) распознавание антигена; 2) активация клеток; 3) их дифференцировка и пролиферация.

Клетки взаимодействуют: 1) при контакте через специальные рецепторы на мембране клеток; 2) при помощи цитокинов .

Гуморальный иммунный ответ (антителообразование) . Основой гуморального иммунного ответа является активация В-лимфоцитов и их дифференцировка в антителообразующие плазматические клетки – плазмоциты.

В нем участвуют В-лимфоциты и Т H 2-хелперы .

В-лимфоциты играют роль антигенпрезентирующей и антителообразующей клетки.

Т H 2-хелперы дифференцируются из Т H 0-хелперов (наивных, нулевых) после распознавания комплекса антиген -MHC II класса на антигенпрезентирующих клетках (АПК, например, макрофагах).

Презентация макрофагами данного комплекса Т H 0-хелперам включает:

1) поглощение антигена и его расщепление (процессинг) до антигенных пептидов;

2) связывание антигенных пептидов с молекулами MHC II класса, образующимися внутри клетки («загрузка» в желобки молекул МНС);

3) выход комплекса антиген -MHC II класса на поверхность клетки для контакта с TCR Т H 0-хелпера.

При презентации антигена формируется иммунный синапс – зона (место)контакта между клетками для распознавания антигена и проведения сигнала в клетку. Включает: TCR (на Т H 0) + антиген - MHC II класса (на макрофаге)+ корецептор СД4 (на Т H 0). Таким образом, TCR распознает измененное «свое», осуществляя двойное распознавание «своего» от «чужого». При этом TCR одного лимфоцита распознают только один антиген. Т H 0-хелпер превращается в Т H 2-хелпер .

После этого Т H 2-хелперы взаимодействуют с В-лимфоцитами. В-лимфоцит распознает антиген при помощи BCR (иммуноглобулиновый рецептор) и клетка поглощает его. После расщепления антигена до низкомолекулярного пептида (процессинга ) и встраивания его в MHC II класса, В-лимфоцит представляет комплекс антиген -MHC II класса Т H 2-хелперу, который взаимодействует с ним при помощи TCR и корецептораСД4. Иммунный синапс включает: TCR (на Т H 2)+ антиген - MHC II класса (на В-лимфоците) +корецептор СД4 (на Т H 2). Далее, на поверхности Т H 2-хелпера появляется СД40-лиганд, который связывается с СД40-рецептором на В-лимфоците. После чего запускается пролиферация, дифференцировка клеток в плазмоциты, синтезирующие иммуноглобулины различных классов. Пролиферация В-лимфоцитов усиливается под воздействием ИЛ-3. Интерлейкины (ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-10, ИЛ-13), продуцируемые Т H 2, участвуют в переключении синтеза классов иммуноглобулинов. Плазмоциты синтезируют антитела одной специфичности.

Образовавшиеся антитела специфически связываются с антигенами, вызвавшими их образование - формируются комплексы антиген-антитело . Комплексы антиген-антитело разрушаются при помощи комплемента (за счет образования МАК) или поглощаются и перевариваются макрофагами (иммунный фагоцитоз).

На поверхности одного микроба может быть множество различных антигенов, поэтому обычно вырабатывается целая серия антител, каждое из которых при этом направлено на определенный антиген.

Клеточный иммунный ответ - формирование клона цитотоксических Т-лимфоцитов – ЦТЛ (СД8), способных разрушать клетки мишени, мембраны которых содержат чужеродные материалы (например, вирусные белки).

Клеточный иммунный ответ лежит в основе противоопухолевого, противовирусного иммунитета и в реакциях отторжения трансплантата, т.е. трансплантационного иммунитета.

В клеточном иммунном ответе участвуют Т H 1-хелперы, ЦТЛ и АПК. Антигепрезентирующие клетки – АПГ (макрофаги и дендритные клетки) поглощают антиген и после процессинга представляют:

1) комплекс антиген -MHC I класса ® ЦТЛ; иммунный синапс включает: TCR (на ЦТЛ)+ антиген - MHC I класса (на макрофаге)+ корецептор СД8 (на ЦТЛ);

2) комплекс антиген-MHC II класса ® Т H 0;иммунный синапс включает:TCR (на Т H 0) + антиген-MHC II класса (на макрофаге)+ корецептор СД4 (на Т H 0) (как и при гуморальном иммунном ответе, но при этом Т H 0 ® Т H 1).

Таким образом, ЦТЛ с помощьюTCR и корецептора СД8 распознает антиген и MHC I класса (двойное распознавание), а Т H 0 с помощьюTCR и корецептора СД4 распознает антиген и MHC II класса и дифференцируются в Т H 1. Т H 1 секретируют ИЛ-2, под действием которого происходит пролиферация ЦТЛ. После чего ЦТЛ «узнают» клетки-мишени, инфицированные внутриклеточными микробами (например, вирусами). На клетках-мишенях выставляются микробные антигены в комплексе с MHC I класса, распознаваемые TCR и корецептором СД8. Активированные и дифференцированные ЦТЛ вызывают гибель клеток-мишеней с помощью выделяемых имицитотоксических белков: перфорины, гранулизины, гранзимы , которые, встраиваясь в мембрану клетки-мишени, образуют поры, способствующие проникновению гранзимов, которые запускают апоптоз клетки-мишени.

Разновидностью клеточного иммунного ответа является гиперчувствительность замедленного типа (ГЗТ) с участиемТ H 1-хелперов и активированных макрофагов. Наибольшую роль в активации макрофагов и NK-клеток выполняет γ-интерферон, выделяемый Т H 1. Активированные макрофаги производят эффективную деструкцию антигена.

Первичный ответ- при первичном контакте с возбудителем (антигеном), вторичный- при повторном контакте. Основные отличия:

Продолжительность скрытого периода (больше- при первичном);

Скорость нарастания антител (быстрее- при вторичном);

Количество синтезируемых антител (больше- при повторном контакте);

Последовательность синтеза антител различных классов (при первичном более длительно преобладают IgM, при вторичном- быстро синтезируются и преобладают IgG- антитела).

Вторичный иммунный ответ обусловлен формированием клеток иммунной памяти. Пример вторичного иммунного ответа- встреча с возбудителем после вакцинации.

Роль антител в формировании иммунитета.

Антитела имеют важное значение в формировании приобретенного постинфекционного и поствакцинального иммунитета.

1. Связываясь с токсинами, антитела нейтрализуют их, обеспечивая антитоксический иммунитет.

2. Блокируя рецепторы вирусов, антитела препятствуют адсорбции вирусов на клетках, участвуют в противовирусном иммунитете.

3. Комплекс антиген- антитело запускает классический путь активации комплемента с его эффекторными функциями (лизис бактерий, опсонизация, воспаление, стимуляция макрофагов).

4. Антитела принимают участие в опсонизации бактерий, способствуя более эффективному фагоцитозу.

5. Антитела способствуют выведению из организма (с мочой, желчью) растворимых антигенов в виде циркулирующих иммунных комплексов.

IgG принадлежит наибольшая роль в антитоксическом иммунитете, IgM- в антимикробном иммунитете (фагоцитоз корпускулярных антигенов), особенно в отношении грамотрицательных бактерий, IgA- в противовирусном иммунитете (нейтрализация вирусов), IgAs- в местном иммунитете слизистых оболочек, IgE- в реакциях гиперчувствительности немедленного типа.

Лекция № 13. Т- и В- лимфоциты. Рецепторы, субпопуляции. Кооперация клеток в иммунном ответе.(4)

К клеткам иммунной системы относят лимфоциты, макрофаги и другие антиген- представляющие клетки (А- клетки, от англ. accessory- вспомогательный), а также так называемую третью популяцию клеток (т.е. клеток, не имеющих основных поверхностных маркеров Т- и В- лимфоцитов, А- клеток).

По функциональным свойствам все иммунокомпетентные клетки разделяют на эффекторные и регуляторные. Взаимодействие клеток в иммунном ответе осуществляется с помощью гуморальных медиаторов - цитокинов . Основные клетки иммунной системы- Т- и В- лимфоциты.

Лимфоциты.

В организме лимфоциты постоянно рециркулируют между зонами скопления лимфоидной ткани. Расположение лимфоцитов в лимфоидных органах и их миграция по кровеносному и лимфатическому руслу строго упорядочены и связаны с функциями различных субпопуляций.

Лимфоциты имеют общую морфологическую характеристику, однако их функции, поверхностные CD (от claster differenciation) маркеры, индивидуальное (клональное) происхождение, различны.

По наличию поверхностных CD маркеров лимфоциты разделяют на функционально различные популяции и субпопуляции, прежде всего на Т- (тимусзависимые , прошедшие первичную дифференцировку в тимусе) лимфоциты и В - (bursa- зависимые, прошедшие созревание в сумке Фабрициуса у птиц или его аналогах у млекопитающих) лимфоциты.

Т- лимфоциты .

Локализация.

Обычно локализуются в так называемых Т- зависимых зонах периферических лимфоидных органов (периартикулярно в белой пульпе селезенки и паракортикальных зонах лимфоузлов).

Функции.

Т- лимфоциты распознают процессированный и представленный на поверхности антиген- представляющих (А) клеток антиген. Они отвечают за клеточный иммунитет , иммунные реакции клеточного типа. Отдельные субпопуляции помогают В- лимфоцитам реагировать на Т- зависимые антигены выработкой антител.

Происхождение и созревание.

Родоначальницей всех клеток крови, в том числе лимфоцитов, является единая стволовая клетка костного мозга . Она генерирует два типа клеток- предшественников- лимфоидную стволовую клетку и предшественника клеток красной крови, от которой происходят и клетки- предшественники лейкоцитов и макрофагов.

Образование и созревание иммунокомпетентных клеток осуществляется в центральных органах иммунитета (для Т- лимфоцитов- в тимусе). Клетки- предшественники Т- лимфоцитов попадают в тимус, где пре- Т- клетки (тимоциты) созревают, пролиферируют и проходят дифференцировку на отдельные субклассы в результате взаимодействия с эпителиальными и дендритными клетками стромы и воздействия гормоноподобных полипептидных факторов, секретируемых эпителиальными клетками тимуса (альфа1- тимозин, тимопоэтин, тимулин и др.).

При дифференцировке Т- лимфоциты приобретают определенный набор мембранных CD- маркеров. Т-клетки разделяют на субпопуляции в соответствии с их функцией и профилем CD- маркеров.

Т- лимфоциты распознают антигены с помощью двух типов мембранных гликопротеинов- Т- клеточных рецепторов (семейство Ig- подобных молекул) и CD3 , нековалентно связанных между собой. Их рецепторы, в отличие от антител и рецепторов В- лимфоцитов, не распознают свободно циркулирующие антигены. Они распознают пептидные фрагменты, представляемые им А- клетками через комплекс чужеродных веществ с соответствующим белком главной системы гистосовместимости 1 и 2 класса.

Выделяют три основные группы Т- лимфоцитов- помощники (активаторы), эффекторы, регуляторы .

Первая группа- помощники ( активаторы ) , в состав которых входят Т- хелперы1, Т- хелперы2, индукторы Т- хелперов, индукторы Т- супрессоров.

1. Т- хелперы1 несут рецепторы CD4 (как и Т- хелперы2) и CD44, отвечают за созревание Т- цитотоксических лимфоцитов (Т- киллеров), активируют Т- хелперы2 и цитотоксическую функцию макрофагов, секретируют ИЛ-2, ИЛ-3 и другие цитокины.

2. Т- хелперы2 имеют общий для хелперов CD4 и специфический CD28 рецепторы, обеспечивают пролиферацию и дифференцировку В- лимфоцитов в антителпродуцирующие (плазматические) клетки, синтез антител, тормозят функцию Т- хелперов1, секретируют ИЛ-4, ИЛ-5 и ИЛ-6.

3. Индукторы Т- хелперов несут CD29, отвечают за экспрессию антигенов HLA класса 2 на макрофагах и других А- клетках.

4. Индукторы Т- супрессоров несут CD45 специфический рецептор, отвечают за секрецию ИЛ-1 макрофагами, активацию дифференцировки предшественников Т- супрессоров.

Вторая группа- Т- эффекторы. В нее входит только одна субпопуляция.

5. Т- цитотоксические лимфоциты (Т- киллеры). Имеют специфический рецептор CD8, лизируют клетки- мишени, несущие чужеродные антигены или измененные аутоантигены (трансплантант, опухоль, вирус и др.). ЦТЛ распознают чужеродный эпитоп вирусного или опухолевого антигена в комплексе с молекулой класса 1 HLA в плазматической мембране клетки- мишени.

Третья группа- Т-клетки- регуляторы. Представлена двумя основными субпопуляциями.

6. Т- супрессоры имеют важное значение в регуляции иммунитета, обеспечивая подавление функций Т- хелперов 1 и 2, В- лимфоцитов. Имеют рецепторы CD11, CD8. Группа функционально разнородна. Их активация происходит в результате непосредственной стимуляции антигеном без существенного участия главной системы гистосовместимости.

7. Т- контсупрессоры. Не имеют CD4, CD8, имеют рецептор к особому лейкину. Способствуют подавлению функций Т- супрессоров, вырабатывают резистентность Т- хелперов к эффекту Т- супрессоров.

В- лимфоциты.

Существует несколько подтипов В- лимфоцитов. Основная функция В- клеток- эффекторное участие в гуморальных иммунных реакциях, дифференциация в результате антигенной стимуляции в плазматические клетки, продуцирующие антитела.

Образование В- клеток у плода происходит в печени, в дальнейшем- в костном мозге. Процесс созревания В- клеток осуществляется в две стадии- антиген - независимую и антиген - зависимую.

Антиген -независимая фаза. В- лимфоцит в процессе созревания проходит стадию пре- В- лимфоцита- активно пролиферирующей клетки, имеющей цитоплазменные H- цепи типа C мю (т.е. IgM). Следующая стадия- незрелый В- лимфоцит характеризуется появлением мембранного (рецепторного) IgM на поверхности. Конечная стадия антигеннезависимой дифференцировки- образование зрелого В- лимфоцита , который может иметь два мембранных рецептора с одинаковой антигенной специфичностью (изотипа) - IgM и IgD. Зрелые В- лимфоциты покидают костный мозг и заселяют селезенку, лимфоузлы и другие скопления лимфоидной ткани, где их развитие задерживается до встречи со “своим” антигеном, т.е. до осуществления антиген- зависимой дифференцировки.

Антиген- зависимая дифференцировка включает активацию, пролиферацию и дифференцировку В- клеток в плазматические клетки и В- клетки памяти. Активация осуществляется различными путями, что зависит от свойств антигенов и участия других клеток (макрофагов, Т- хелперов). Большинство антигенов, индуцирующих синтез антител, для индукции иммунного ответа требуют участия Т- клеток- тимус- зависимые пнтигены. Тимус- независимые антигены (ЛПС, высокомолекулярные синтетические полимеры) способны стимулировать синтез антител без помощи Т- лимфоцитов.

В- лимфоцит с помощью своих иммуноглобулиновых рецепторов распознает и связывает антиген. Одновременно с В- клеткой антиген по представлению макрофага распознается Т- хелпером (Т- хелпером 2), который активируется и начинает синтезировать факторы роста и дифференцировки. Активированный этими факторами В- лимфоцит претерпевает ряд делений и одновременно дифференцируется в плазматические клетки, продуцирующие антитела.

Пути активации В- клеток и кооперации клеток в иммунном ответе на различные антигены и с участием популяций имеющих и не имеющих антиген Lyb5 популяций В- клеток отличаются. Активация В- лимфоцитов может осуществляться:

Т- зависимым антигеном при участии белков МНС класса 2 Т- хелпера;

Т- независимым антигеном, имеющим в составе митогенные компоненты;

Поликлональным активатором (ЛПС);

Анти- мю иммуноглобулинами;

Т- независимым антигеном, не имеющим митогенного компонента.


Похожая информация.