Механизм действия гормонов щитовидной железы. Синтез, секреция и метаболизм тиреоидных гормонов Схема образования гормонов щитовидной железы

В основе структуры тиреоидных гормонов лежит тирониновое ядро, которое состоит из двух конденсированных молекул L-тирозина. Химическая природа гормонов фолликулярной части щитовидной железы выяснена в деталях сравнительно давно. Важнейшая структурная характеристика гормонально-активных производных тиронина - наличие в их молекуле 3 или 4 атомов йода. Таковы трийодтиронин (3,5,3`-трийодтиронин, Т 3) и тироксин (3,5,3`,5`-тетрайодтиронин, Т 4) - гормоны фолликулярных клеток щитовидной железы позвоночных, осуществляющие регуляцию энергообмена, синтеза белка и развития организма .

Рис. 3 Структура гормонов щитовидной железы (слева направо): тиронин; тироксин; трийодтиронин; дийодтиронин.

Кроме того, образуются йодированные предшественники, моно- и дийодтирозины, не обладающие биологической активностью.

По химической структуре тиреоидные гормоны относятся к производным аминокислот, а именно тиронина. По физическому действию являются гормонами - исполнителями, действуя непосредственно на обменные процессы в клетках и тканях - мишенях .

Считается установленным, что все йодсодержащие гормоны, отличающиеся друг от друга содержанием йода, являются производными L-тиронина, который синтезируется в организме из аминокислоты L-тирозина.

Последовательность реакций, связанных с синтезом гормонов щитовидной железы, была расшифрована при помощи радиоактивного йода . Было показано, что введенный меченый йод прежде всего обнаруживается в молекуле монойодтирозина, затем - дийодтирозина и только потом - тироксина .

В настоящее время еще полностью не изучены ферментные системы, катализирующие промежуточные стадии синтеза этих гормонов, и природа фермента, участвующего в превращении йодидов в свободный йод, необходимый для йодирования 115 остатков тирозина в молекуле тиреоглобулина .

Синтез тиреоидных гормонов

Синтез йодида

Для нормального синтеза тиреоидных гормонов необходим адекватный захват йода, так как тиреоидные гормоны являются единственными соединениями организма, содержащими йод в своей структуре .

Йод, открытый почти 200 лет назад, относится к категории незаменимых для организма человека элементов, являясь облигатным компонентом для синтеза тиреоидных гормонов (ТГ) - тироксина (Т 4) и трийодтиронина (Т 3). В организм человека йод поступает с пищей, водой и воздухом. Суточная потребность в йоде зависит от возраста (табл. 1).

Таблица.1 Возрастные нормы, потребления йода в сутки

В регионах, расположенных около моря, содержание йода в воздухе может достигать 50 мкг в 1 м3, в морской рыбе и морепродуктах -- от 40 до 300 мкг на 100 г, меньше в продуктах животного происхождения (от 7 до 20 мкг на 100 г продукта). Наименьшее количество йода содержится в продуктах растительного происхождения. В процессе хранения и тепловой кулинарной обработки содержание йода быстро падает.

Более половины территорий Российской Федерации относятся к йоддефицитным регионам (по содержанию йода в воде и почве) с различной степенью выраженности йодного обеспечения. Кроме природной недостаточности к дефициту йода (ДИ) в организме могут привести следующие состояния:

2) генетически детерминированные тиреопатии, инфильтрация щитовидной железы при гистиоцитозах, саркоидозе;

3) повышенная потребность в йоде в подростковом возрасте, в период беременности и лактации;

4) наличие гиповитаминозов, гипо- и дисмикроэлементозов;

5) поступление йода в недоступной для всасывания форме;

6) воздействие медикаментозных препаратов и других факторов окружающей среды химической и физической природы, в том числе и радиационное воздействие .

Йодид, удаляемый из сыворотки щитовидной железой, возвращается в циркуляцию в виде йодтиронинов (тиреоидных гормонов), чей йод возвращается в основном во внеклеточную жидкости после периферического дейодирования. Пул йодированных гормонов включает находящиеся в циркулярном русле, а так же тиреоидные гормоны в тканях. Самым большим пулом обладает щитовидная железа, которая содержит 8000 мкг (рис.4).


Рис. 4.

Пул щитовидной железы характеризуется очень медленным оборотом, приблизительно 1% в сутки. На рисунке изображены нормальные пути метаболизма йода в состоянии равновесия йода. Стрелки указывают суточный переход из одного компартмента в дугой. Цифры в скобках указывают размеры пулов .

Производятся в щитовидной железе (ЩЗ). Тироксин и трийодтиронин - это два основных гормона этого органа, в составе которых присутствует атом йода. Эти гормоны вырабатываются клетками фолликулярного эпителия.

Роль тиреоидных гормонов

Тироксин и трийодтиронин синтезируются на основе тирозина (альфа-аминокислота) и имеют огромное значение для нормального развития всего организма.

  • Поддерживают работу дыхательного центра.
  • С их участием производится контроль образования тепла организмом.
  • Влияют на кислородный обмен и увеличивают потребность тканей в кислороде.
  • Влияют на силу сердечных сокращений (ионотропный эффект).
  • Регулируют частоту сокращений сердца (хронотропный эффект).
  • За счет гормонов щитовидной железы увеличивается количество b-адренергических рецепторов в скелетных и сердечной мышцах, а также расположенных в жировой ткани и лимфоцитах.
  • Активируют моторику всего желудочно-кишечного тракта.
  • Под их влиянием происходит синтез различных структурных белков и дифференцировка тканей.
  • Стимулируют развитие и рост всего организма.
  • Стимулируют работу ЦНС и ускоряют мыслительные ассоциации.
  • Регулируют глюкозу в крови и увеличивают захват и утилизацию ее клетками, тем самым активируют процесс гликолиза.
  • Влияют на распад жировой ткани (липолиз) и задерживают ее формирование и отложение.

Нарушение секреции тиреоидных гормонов в человеческом организме может привести к задержке психического и физического развития.

Синтез гормонов ЩЗ

Основным белком ЩЗ является тиреоглобулин. Он служит в качестве матрицы для образования гормонов, вырабатываемых железой. Тироксин и трийодтиронин синтезируются на основе белка тиреоглобулина. Этот белок содержит в своем составе более 5 тыс. аминокислотных остатков и всего 18 из них йодированы. Тироксин синтезируется при участии только от 2 до 4 аминокислотных остатков. Кроме тиреоглобулина, для выработки гормонов ЩЗ принимает участие и холестерин. Таким образом, тироксин и трийодтиронин синтезируются на основе холестерина, как и стероидные гормоны. Щитовидной железой гормона T4 производится в 10 раз больше, чем T3.

Трийодтиронин гормон (T3) формируется в результате соединения молекул ди- и монойодтирозина, которые входят в состав белка тиреоглобулина.

Как гормоны ЩЗ поступают к тканям?

Гормоны ЩЗ связываются белками плазмы крови и в таком виде доставляются до тканей и органов. Существуют три основных белка крови, которые способны связывать гормоны T3 и T4:

  1. ТСГ - тироксинсвязывающий глобулин.
  2. ТСПА - тироксинсвязывающий преальбумин.
  3. Альбумин.

На уровень тироксина и трийодтиронина влияют секреторная деятельность ЩЗ и связывающая способность сыворотки крови.

Контроль синтеза Т3 и Т4 осуществляется гормоном гипофиза В свою очередь, синтез ТТГ осуществляется под влиянием ТРГ (тиреотропин-рилизинг гормон).

Трийодтиронин свободный (fT3)

Процентное соотношение fT3 составляет всего лишь 0,25% от общего содержания Т3 в крови. Как мы уже выяснили, Т3 в крови находится гораздо меньше, чем Т4, но, несмотря на это, свободная его форма всего в два раза меньше свободной формы Т4.

Именно свободная форма гормонов ЩЗ обуславливает их биологическую активность. Трийодтиронин (гормон) намного активнее тироксина. Именно поэтому свободный уровень его характеризует общее метаболистическое действие тиреоидных гормонов.

Т4 биологически малоактивный. Но при необходимости он может под воздействием фермента селен-зависимой монодейодиназы преобразовываться в более активный Т3.

Гормон тироксин функции в организме выполняет такие же важные, как и трийодтиронин. А именно Т4 отвечает за выработку в печени витамина А, стимулирует белковые обменные процессы, влияет на липидный (жировой) метаболизм, регулирует уровень триглицеридов и плохого холестерина в крови, влияет на правильное формирование костной ткани, что особенно актуально в детском возрасте.

Как правильно ЩЗ?

Для того чтобы произвести исследование уровня гормонов ЩЗ, достаточно сдать на анализ кровь из вены. Это можно сделать в процедурном кабинете.

Чтобы исследование прошло наиболее достоверно и на его результаты не повлияли внешние факторы, за один месяц до сдачи крови на анализ необходимо исключить прием всех гормональных препаратов. Конечно, это должно быть согласовано с лечащим врачом. За 3-5 дней до сдачи рекомендуется исключить лекарственные средства, содержащие в составе йод.

Непосредственно перед забором крови пациент не должен проходить никаких рентгенологических исследований. Накануне сдачи крови не рекомендованы высокие физические нагрузки и стрессовые ситуации (спортивные соревнования, сдача экзаменов и т. д.). Перед тем как зайти в кабинет и сдать анализ, пациенту рекомендуется посидеть и отдохнуть в течение 15-30 минут.

Нормальные значения гормонов ЩЗ

Мы выяснили, какую роль в организме играют тироксин и трийодтиронин, синтезируются на основе каких компонентов, какие вещества отвечают за их связывание в сыворотке крови, как правильно сдать анализ на эти гормоны. Теперь рассмотрим их нормальные значения и при каких заболеваниях они могут повышаться или понижаться. Нормы этих гормонов приведены в таблице, расположенной ниже:

При каких заболеваниях повышается fT3?

Трийодтиронин свободный может увеличиваться при следующих заболеваниях:

  • Гипертиреоз первичный или вторичный.
  • Т3 токсикоз изолированный.
  • Тиреоидит.
  • Гипотиреоз Т4-резистентный.
  • Хориокарцинома.
  • Синдром резистентности к гормонам ЩЗ.
  • Понижение концентрации тироксинсвязывающего глобулина.
  • Хронические болезни печени.
  • При гемодиализе.
  • При нефротическом синдроме.
  • После терапии препаратам радиоактивного йода.

В каких случаях происходит снижение fT3?

Понижение fT3 в крови может происходит в следующих ситуациях:

  • Гипотиреоз первичный, вторичный или третичный.
  • Нетиреоидная патология тяжелой формы, включая психические и соматические заболевания (инсульт, инфаркт и т. д.).
  • Длительное голодание или диета с низким употреблением в пищу белка.
  • В период восстановления после тяжелых патологий и операций.
  • При первичной некомпенсированной надпочечной недостаточности.
  • У женщин при регулярных тяжелых физических нагрузках.
  • В (уровень fT3 в период беременности неуклонно снижается начиная с первого триместра и к концу третьего становится наиболее выраженным).
  • При приеме следующих лекарственных препаратов: амиодарона, андрогенов, пропранолола, салицилатов, рентгеноконтрастных иодсодержащий средств.

Кроме того, возможны сезонные колебания fT3. Максимум приходится на временной промежуток с сентября по февраль, а минимум на летние месяцы.

Симптомы гипотиреоза

Гипотиреоз - это недостаточный синтез гормонов ЩЗ. В этом случае могут наблюдаться следующие симптомы:

  • Вялость, быстрая утомляемость и сонливость.
  • Появление избыточного веса, который не удается регулировать за счет физической нагрузки и диет.
  • Постоянная депрессия.
  • Может наблюдаться снижение температуры тела до 35,6 градуса.
  • Зуд кожных покровов, их сухость и отечность.
  • Выпадение волос и перхоть, которая не проходит даже после использования лечебных шампуней.
  • Снижение (брадикардия).
  • Пониженное артериальное давление.
  • Снижение памяти и реакции.
  • Регулярные запоры.
  • У женщин может спровоцировать нарушение менструального цикла и бесплодие.

Симптомы гипертиреоза

Гипертиреоз - это избыток синтеза гормонов ЩЗ. При этом наблюдается следующая симптоматика:

  • Повышенный аппетит и при этом снижение веса.
  • Общая слабость, на фоне которой может наблюдаться вспышка возбуждения.
  • Дряблость и сухость кожи.
  • Учащенное сердцебиение и повышение артериального давления.
  • Повышение температуры тела до 37,5 градуса.
  • Нарушение менструального цикла у женщин и бесплодие.
  • В тяжелых случаях заметное увеличение ЩЗ и пучеглазие.

Профилактика заболеваний ЩЗ

Щитовидная железа и ее гормоны выполняют важнейшие функции для организма, поэтому необходимо контролировать состояние этого органа. Это делается на ежегодных профилактических осмотрах. При необходимости врач даст направление на УЗИ и анализы гормонов ЩЗ.

Для предупреждения заболеваний ЩЗ и недостатка гормонов этого органа необходимо включать в свой рацион продукты с высоким содержанием йода. К ним относятся практически все морепродукты (тунец, камбала, лосось, креветки, фрукты (хурма, бананы, апельсины), овощи (лук, чеснок, щавель, баклажаны). Соблюдая простые рекомендации, можно надолго сохранить здоровье щитовидной железы и всего организма в целом.

Щитовидная железа (ЩЖ) и гормоны, которые она продуцирует, играют исключительно важную роль в организме человека. Щитовидка является частью эндокринной системы человека, которая вместе с нервной системой осуществляют регуляцию всех органов и систем. Тиреоидные гормоны регулируют не только физическое развитие человека, но и существенно влияют на его интеллект. Доказательством этого является умственная отсталость у детей с врожденным гипотиреозом (сниженная продукция гормонов ЩЖ). Возникает вопрос, какие гормоны здесь вырабатываются, какой механизм действия гормонов щитовидной железы и биологические эффекты этих веществ?

Вся ткань щитовидки состоит из фолликулов (структурно-функциональная единица). Фолликулы – это округлые образования, которые по периферии состоят из клеток (тиреоцитов), а в середине заполнены коллоидом. Коллоид – это очень важное вещество. Оно вырабатывается тиреоцитами и состоит в основном из тиреоглобулина. Тиреоглобулин – это белок, который синтезируется в тиреоцитах из аминокислоты тирозина и атомов йода, и представляет собой готовый запас йодсодержимых гормонов щитовидной железы. Оба компонента тиреоглобулина не вырабатываются в организме и должны регулярно поступать с пищей, иначе может наступить дефицит гормонов и его клинические последствия.

Если организму необходимы тиреоидные гормоны, то тиреоциты обратно захватывают из коллоида синтезированный тиреоглобулин (депо готовых тиреоидных гормонов) и расщепляют его на два гормона ЩЖ:

· Т3 (трийодтиронин), его молекула имеет 3 атома йода;

· Т4 (тироксин), его молекула имеет 4 атома йода.

После выброса Т3 и Т4 в кровь, они соединяются со специальными транспортными белками крови и в таком виде (неактивном) транспортируются к месту назначения (чувствительные к тиреоидным гормонам ткани и клетки). Не вся порция гормонов в крови находится в связи с белками (они и проявляют гормональную активность). Это специальный защитный механизм, который придумала природа от переизбытка тиреоидных гормонов. По мере надобности в периферических тканях Т3 и Т4 отсоединяются от транспортных белков и выполняют свои функции.

Необходимо отметить, что гормональная активность тироксина и трийодтиронина значительно отличается. Т3 в 4-5 раз активнее, кроме того он плохо соединяется с транспортными белками, что усиливает его действие, в отличие от Т4. Тироксин, когда достигает чувствительных клеток, отсоединяется от белкового комплекса и от него отщепляется один атом йода, тогда он превращается в активный Т3. Таким образом, влияние гормонов щитовидной железы осуществляются на 96-97% за счет трийодтиронина.



Регулирует работу ЩЖ и выработку Т3 и Т4 гипоталамо-гипофизарная система по принципу обратной негативной связи. Если в крови недостаточное количество тиреоидных гормонов, то это улавливается гипоталамусом (часть головного мозга, где нервная и эндокринная регуляции функций организма плавно переходят друг в друга). Он синтезирует тиреотропин-релизинг гормон (ТРГ), который заставляет гипофиз (придаток головного мозга) вырабатывать тиреотропный гормон, который с током крови достигает ЩЖ и заставляет ее продуцировать Т3 и Т4. И наоборот, если в крови наблюдается избыток тиреоидных гормонов, то меньше вырабатывается ТРГ, ТТГ и соответственно Т3 и Т4.

Механизм действия тиреоидных гормонов

Как именно тиреоидные гормоны заставляют клетки делать то, что необходимо? Это очень сложный биохимический процесс, он требует вовлечения многих веществ и ферментов.

Тиреоидные гормоны относятся к тем гормональным веществам, которые осуществляют свои биологические эффекты путем соединения с рецепторами внутри клеток (так же, как и стероидные гормоны). Существует и вторая группа гормонов, которые действуют путем соединения с рецепторами на поверхности клеток (гормоны белковой природы, гипофиза, поджелудочной железы и пр.).

Отличием между ними является скорость ответа организма на стимуляцию. Так как белковым гормонам не нужно проникать внутрь ядра, то они действуют быстрее. Кроме того они активируют ферменты, которые уже синтезированы. А тиреоидные и стероидные гормоны воздействуют на клетки-мишени путем проникновения в ядро и активации синтеза нужных ферментов. Первые эффекты таких гормонов проявляются спустя 8 часов, в отличие от пептидной группы, которые осуществляют свои эффекты на протяжении доли секунд.



Весь сложный процесс того, как гормоны щитовидной железы регулируют функции организма можно отобразить в упрощенном варианте:

· проникновение гормона внутрь клетки через клеточную мембрану;

· соединение гормона с рецепторами в цитоплазме клетки;

· активирование комплекса гормон-рецептор и его миграция в ядро клетки;

· взаимодействие этого комплекса с определенным участком ДНК;

· активация нужных генов;

· синтез белков-ферментов, которые и осуществляют биологические действия гормона.

Основные метаболические эффекты Т3 и Т4:

· повышает поглощение кислорода клетками, что приводит к выработке энергии, необходимой клеткам для процессов жизнедеятельности (повышение температуры и основного обмена);

· активизируют синтез белков клетками (процессы роста и развития тканей);

· липолитический эффект (расщепляют жиры), стимулируют окисление жирных кислот, что приводит к их уменьшению в крови;

· активируют образование эндогенного холестерина, который необходим для построения половых, стероидных гормонов и желчных кислот;

· активация распада гликогена в печени, что приводит к повышению глюкозы в крови;

· стимулируют секрецию инсулина.

Все биологические эффекты тиреоидных гормонов основываются на метаболических способностях.

Основные физиологические эффекты Т3 и Т4:

· обеспечение нормальных процессов роста, дифференциации и развития органов и тканей (особенно центральной нервной системы). Это особенно важно в период внутриутробного развития. Если в это время существует недостаток гормонов, то ребенок родиться с кретинизмом (физическая и умственная отсталость);

· быстрое заживление ран и травм;

· активация работы симпатической нервной системы (учащение сердцебиения, потливость, сужение сосудов);

· повышение сократимости сердца;

· стимуляция теплообразования;

· влияют на водный обмен;

· повышают артериальное давление;

· тормозят процессы образования и отложения жировых клеток, что приводит к похудению;

· активация психических процессов человека;

· поддержание репродуктивной функции;

· стимулируют образование клеток крови в костном мозге.

7746 0

Анатомия и физиология щитовидной железы

Щитовидная железа состоит из двух долей, располагающихся по обеим сторонам трахеи. Доли связаны между собой тонким перешейком, лежащим на передней поверхности трахеи под cartilago cricoidea. Иногда из перешейка исходит дополнительная пирамидальная доля. Масса железы составляет в среднем 15-20 г и варьирует в зависимости от района проживания человека.

У зародыша щитовидная железа представляет собой выпячивание дна глоточного кармана. Удлиняясь книзу, она образует ductus thyreoglossus, преобретая двудольную структуру. В редких случаях одна или обе доли щитовидной железы не развиваются. При остановке миграции эмбриональной ткани возможно образование так называемой язычной щитовидной железы. Известны случаи, когда участки тиреоидной ткани локализуются и в других местах по ходу трахеи. Иногда они инфицируются или подвергаются злокачественному перерождению. Зародышевая тиреоидная ткань обладает свойством перемещаться вслед за вилочковой железой в грудную клетку, где спустя десятилетия способна дать начало загрудинному зобу со сдавлением трахеи или возвратного гортанного нерва.

Микроскопически ткань щитовидной железы состоит преимущественно из сферических тиреоидных фолликулов. В норме каждый фолликул представляет собой один слой кубовидных клеток, окружающих полость, заполненную вязкой гомогенной массой — коллоидом. В состоянии повышенной функции фолликулярные клетки приобретают цилиндрическую форму, а в условиях гипофункции уплощаются. Между фолликулами располагаются кровеносные капилляры и нервные окончания, непосредственно контактирующие с наружной поверхностью фолликулов. Апикальная (обращенная к заполненной коллоидом полости) поверхность каждой фолликулярной клетки (тиреоцита) снабжена микроворсинками, проникающими в коллоид.

Щитовидная железа взрослого человека содержит и парафолликулярные или К-клетки в межфолликулярной соединительной ткани, которые вырабатывают пептидный гормон — кальцитонин. Они отличаются от фолликулярного эпителия большим числом митохондрий и присутствием электронно-плотных гранул.

Синтез, секреция и метаболизм тиреоидных гормонов

На рис. 31 показана химическая структура тиреоидных гормонов — тироксина (Т4) и трийодтиронина (Т3), а также ряда их основных метаболитов. Предшественником Т4 и Т3 является аминокислота L-тирозин. Присоединение йода к фенольному кольцу тирозина обеспечивает образование моно- или дийодтирозинов. Если к тирозину с помощью эфирной связи присоединяется второе фенольное кольцо, то образуется тиронин. К каждому из двух или сразу к обоим фенольным кольцам тиронина может примкнуть один или два атома йода в метаположении по отношению к аминокислотному остатку. Т4 представляет собой 3,5,3",5"-тетрайодтиронин, а Т3 — 3,5,3"-трийодтиронин, т. е. содержит меньше на один атом йода в «наружном» (лишенном аминокислотной группировки) кольце.

При удалении атома йода из «внутреннего» кольца Т4 превращается в 3,3",5"-трийодтиронин или в обратный (реверсивный) Т3 (рТ3). Дийодтиронин может существовать в трех формах (3",5"-Т2, 3,5-Т2 или 3,3"-Т2). При отщеплении от Т4 или Т3 аминогруппы образуются соответственно тетрайод- и трийодтироуксусные кислоты. Значительная гибкость пространственной структуры молекулы тиреоидных гормонов, определяемой поворотом обоих колец тиронина по отношению к аланиновой части, играет существенную роль во взаимодействии этих гормонов со связывающими белками плазмы крови и клеточными рецепторами.

Основным природным источником йода служат морские продукты. Минимальная суточная потребность в йоде (в пересчете на йодид) для человека — около 80 мкг, но в отдельных местностях, где с профилактической целью применяется йодированная соль, потребление йодида может достигать 500 мкг/сут. Содержание йодида определяется не только тем его количеством, которое поступает из желудочно-кишечного тракта, но и «утечкой» из щитовидной железы (в норме около 100 мкг/сут), а также периферическим дейодированием йодтиронинов.


Рис. 31. Химическая структура тиреоидных гормонов.


Щитовидная железа обладает способностью концентрировать йодид из плазмы крови. Аналогичной способностью обладают и другие ткани, например, слизистая оболочка желудка и слюнные железы. Процесс переноса йодида в фолликулярный эпителий энергозависим, насыщаем и осуществляется сопряженно с обратной транспортировкой натрия мембранной натрий-калий-аденозинтрифосфатазой (АТФазой). Система перемещения йодида не строго специфична и обусловливает доставку в клетку ряда других анионов (перхлорат, пертехнетат и тиоцианат), которые являются конкурентными ингибиторами процесса накопления йодида в щитовидной железе.

Как уже отмечалось, помимо йода составной частью тиреоидных гормонов является тиронин, образующийся в недрах молекулы белка — тиреоглобулина. Его синтез происходит в тиреоцитах. На долю тиреоглобулина приходится 75 % всего содержащегося и 50 % синтезирующегося в каждый данный момент белка в щитовидной железе.

Йодид, попавший внутрь клетки, окисляется и ковалентно присоединяется к остаткам тирозина в молекуле тиреоглобулина. Как окисление, так и йодирование тирозильных остатков катализируются присутствующей в клетке пероксидазой. Хотя активная форма йода, йодирующая белок, точно неизвестна, но, прежде чем произойдет такое йодирование (т. е. процесс органификации йода), должна образоваться перекись водорода. По всей вероятности, она продуцируется НАД-Н-цитохромом В- или НАДФ-Н-цитохром С-редуктазой. Йодированию подвергаются как тирозильные, так и монойодтирозильные остатки в молекуле тиреоглобулина. На этот процесс влияет природа рядом расположенных аминокислот, а также третичная конформация тиреоглобулина. Пероксидаза представляет собой мембранно-связанный ферментный комплекс, простетическую группу которого образует гем. Гематиновая группировка абсолютно необходима для проявления активности фермента.

Йодирование аминокислот предшествует их конденсации, т. е. образованию тирониновых структур. Последняя реакция требует присутствия кислорода и может осуществляться через промежуточное образование активного метаболита йодтирозина, например пировиноградной кислоты, которая затем присоединяется к йодтирозильному остатку в составе тиреоглобулина. Независимо от того, какой именно механизм конденсации существует, эта реакция также катализируется тиреоидной пероксидазой.

Молекулярная масса зрелого тиреоглобулина 660000 дальтон (коэффициент седиментации — 19). Он обладает, по-видимому, уникальной третичной структурой, способствующей конденсации йодтирозильных остатков. Действительно, содержание тирозина в этом белке мало отличается от такового в других белках, причем йодирование тирозильных остатков может происходить в любом из них. Однако реакция конденсации осуществляется с достаточно высокой эффективностью, вероятно, только в тиреоглобулине.

Содержание йодаминокислот в нативном тиреоглобулине зависит от доступности йода. В норме тиреоглобулин содержит 0,5 % йода в составе 6 остатков монойодтирозина (МИТ), 4 — дийодтирозина (ДИТ), 2 — Т4 и 0,2 — Тз на молекулу белка. Обратный Т3 и дийодтиронины присутствуют в очень малых количествах. Однако в условиях дефицита йода эти соотношения нарушаются: возрастают отношения МЙТ/ДИТ и Т3/Т4, что рассматривают как активное приспособление гормогенеза в щитовидной железе к дефициту йода, поскольку Тз обладает большей метаболической активностью по сравнению с Т4.

На рис. 32 схематически изображена последовательность синтеза тиреоглобулина в фолликулярной клетке щитовидной железы. Весь процесс направлен в одну сторону: от базальной мембраны к апикальной и далее — в коллоидное пространство. Образование свободных тиреоидных гормонов и поступление их в кровь предполагает существование и обратного процесса (рис. 33). Последний складывается из ряда этапов. Вначале содержащийся в коллоиде тиреоглобулин захватывается отростками микроворсинок апикальной мембраны, образующими пузырьки пиноцитоза. Они перемещаются в цитоплазму фолликулярной клетки, где их называют коллоидными каплями. В свою очередь они сплавляются с микросомами, образуя фаголизосомы, и в их составе мигрируют к базальной клеточной мембране. В ходе этого процесса происходит протеолиз тиреоглобулина, во время которого образуются Т4 и Т3. Последние диффундируют из фолликулярной клетки в кровь.

В самой клетке происходит также частичное дейодирование Т4 с образованием Тз. В кровь попадает и некоторая часть йодтирозинов, йода и небольшое количество тиреоглобулина. Последнее обстоятельство имеет существенное значение для осмысливания патогенеза аутоиммунных заболеваний щитовидной железы, для которых характерно присутствие в крови антител к тиреоглобулину. В отличие от прежних представлений, согласно которым образование таких аутоантител связывали с повреждением тиреоидной ткани и попаданием тиреоглобулина в кровь, в настоящее время доказано, что тиреоглобулин поступает туда и в норме.

В процессе внутриклеточного протеолиза тиреоглобулина в цитоплазму фолликулярной клетки проникают не только йодтиронины, но и содержащиеся в белке в большом количестве йодтирозины. Однако, в отличие от Т4 и Тз, они быстро дейодируются ферментом, присутствующим в микросомной фракции, с образованием йодида. Большая часть последнего подвергается в щитовидной железе реутилизации, но некоторое его количество все же выходит из клетки в кровь.

Дейодирование йодтирозинов обеспечивает в 2-3 раза больше йодида для нового синтеза тиреоидных гормонов, чем транспортировка этого аниона из плазмы крови в щитовидную железу, и поэтому играет основную роль в поддержании синтеза йодт-иронинов.

За сутки щитовидная железа продуцирует примерно 80-100 мкг Т4. Период полужизни этого соединения в крови составляет 6-7 дней. Ежесуточно в организме распадается около 10 % секретируемого Т4. Скорость его деградации, как и Т3, зависит от их связывания с белками сыворотки и тканей. В нормальных условиях более 99,95 % присутствующего в крови Т4 и более 99,5 % Тз связано с белками плазмы. Последние выступают в роли буфера уровня свободных тиреоидных гормонов и одновременно служат как бы местом их хранения. На распределение Т4 и Тз среди различных связывающих белков влияют рН и ионный состав плазмы.

В плазме примерно 80 % Т4 скомплексировано с тироксинсвязывающим глобулином (ТСГ), 15 % — с тироксинсвязывающим преальбумином (ТСПА), а остальная часть — с альбумином сыворотки. ТСГ связывает и 90 % Тз, а ТСПА — 5 % этого гормона. Принято считать, что метаболически активной является только та ничтожная доля тиреоидных гормонов, которая не присоединена к белкам и способна к диффузии через клеточную мембрану. В абсолютных цифрах количество свободного Т4 в сыворотке составляет около 2 нг%, а Тз — 0,2 нг%. Однако в последнее время получен ряд данных о возможной метаболической активности и той части тиреоидных гормонов, которая связана с ТСПА. Не исключено, что ТСПА является необходимым посредником в передаче гормонального сигнала из крови в клетки.

ТСГ имеет молекулярную массу 63 000 дальтон и представляет собой гликопротеин, синтезируемый в печени. Его сродство к Т4 примерно в 10 раз выше, чем к Тз. Углеводный компонент ТСГ представлен сиаловой кислотой и играет существенную роль в комплексировании гормонов. Печеночная продукция ТСГ стимулируется эстрогенами и тормозится андрогенами и большими дозами глюкокортикоидов. Кроме того, существуют врожденные аномалии продукции этого белка, которые могут сказаться на общей концентрации тиреоидных гормонов в сыворотке крови.

Молекулярная масса ТСПА 55000 дальтон. В настоящее время установлена полная первичная структура этого белка. Его пространственная конфигурация определяет существование проходящего через центр молекулы канала, в котором расположены два одинаковых связывающих места. Комплексирование Т4 с одним из них резко снижает сродство второго к гормону. Подобно ТСГ, ТСПА обладает



Рис. 32. Последовательность синтеза тиреоглобулина в щитовидной железе (схема)


Рис. 33. Схема образования свободных тиреоидных гормонов.


гораздо большим сродством к Т4, чем к Т3. Интересно, что другие участки ТСПА способны связывать небольшой по размеру (21 000) белок, специфически взаимодействующий с витамином А. Присоединение этого белка стабилизирует комплекс ТСПА с Т4. Важно отметить, что тяжелые нетиреоидные заболевания, а также голодание сопровождаются быстрым и значительным падением уровня ТСПА в сыворотке.

Сывороточный альбумин имеет наименьшее из перечисленных белков сродство к тиреоидным гормонам. Поскольку в норме с альбумином связано не более 5 % общего количества присутствующих в сыворотке тиреоидных гормонов, изменение его уровня лишь очень слабо влияет на концентрацию последних.

Как уже отмечалось, соединение гормонов с белками сыворотки крови не только предотвращает биологические эффекты Т3 и Т4, но и в значительной степени замедляет скорость их деградации. До 80 % Т4 метаболизируется путем монодейодирования. В случае отщепления атома йода в 5"-м положении образуется Т3, обладающий гораздо большей биологической активностью; при отщеплении йода в положении 5 образуется рТз, биологическая активность которого крайне незначительна. Монодейодирование Т4 в том или ином положении является не случайным процессом, а регулируется рядом факторов. Однако в норме дейодирование в обоих положениях протекает обычно с равной скоростью. Небольшие количества Т4 подвергаются дезаминированию и декарбоксилированию с образованием тетрайодтироуксусной кислоты, а также конъюгированию с серной и глюкуроновой кислотами (в печени) с последующей экскрецией конъюгатов с желчью.

Монодейодирование Т4 вне щитовидной железы служит основным источником Т3 в организме. Этот процесс обеспечивает почти 80 % из 20-30 мкг Т3, образующегося за сутки. Таким образом на долю секреции Т3 щитовидной железой приходится не более 20 % его суточной потребности. Внетиреоидное образование Тз из Т4 катализируется Тгб"-дейодиназой. Фермент локализуется в клеточных микросомах и требует в качестве кофактора восстановленных сульфгидрильных групп. Считают, что основное превращение Т4 в Тз происходит в тканях печени и почек. Т3 слабее, чем Т4, связан с белками сыворотки, поэтому подвергается более быстрой деградации.

Период его полужизни в крови составляет около 30 ч. Он превращается преимущественно в 3,3"-Т2 и 3,5-Т2; образуются и небольшие количества трийодтироуксусной и трийодтиропропионовой кислот, а также конъюгатов с серной и глюкуроновой кислотами. Все эти соединения практически лишены биологической активности. Различные дийодтиронины превращаются затем в монойодтиронины и, наконец, в свободный тиронин, который обнаруживается в моче.

Концентрация различных йодтиронинов в сыворотке здорового человека составляет, мкг%: Т4 — 5-11; нг%: Т3 — 75-200, тетрайодтироуксусная кислота — 100-150, рТ3 — 20-60, 3,3"-Т2 — 4-20, 3,5-Т2 — 2-10, трийодтироуксусная кислота — 5-15, 3",5"-Т2 — 2-10, 3-Т, — 2,5.

Состоит из двух долей и перешейка и расположена впереди гортани. Масса щитовидной железы составляет 30 г.

Основной структурно-функциональной единицей железы являются фолликулы — округлые полости, стенка которых образована одним рядом клеток кубического эпителия. Фолликулы заполнены коллоидом и содержат гормоны тироксин и трийодтиронин , которые связаны с белком тиреоглобулином. В межфолликулярном пространстве находятся С-клетки, которые вырабатывают гормон тиреокальцитонин. Железа богато снабжена кровеносными и лимфатическими сосудами. Количество , протекающей через щитовидную железу за 1 мин, в 3-7 раз выше массы самой железы.

Биосинтез тироксина и трийодтиронина осуществляется за счет йодирования аминокислоты тирозина, поэтому в щитовидной железе происходит активное поглощение йода. Содержание йода в фолликулах в 30 раз превышает его концентрацию в крови, а при гиперфункции щитовидной железы это соотношение становится еще больше. Поглощение йода осуществляется за счет активного транспорта. После соединения тирозина, входящего в состав тиреоглобулина, с атомарным йодом образуется монойодтирозин и дийодтирозин. За счет соединения двух молекул дийодтирозина образуется тетрайодтиронин, или тироксин; конденсация моно- и дийодтирозина приводит к образованию трийодтиронина. В дальнейшем в результате действия протеаз, расщепляющих тиреоглобулин, происходит высвобождение в кровь активных гормонов.

Активность тироксина в несколько раз меньше, чем трийодтиронина, однако содержание в крови тироксина примерно в 20 раз больше, чем трийодтиронина. Тироксин при дейодировании может превращаться в трийодтиронин. На основании этих фактов предполагают, что основным гормоном щитовидной железы является трийодтиронин, а тироксин выполняет функцию его предшественника.

Синтез гормонов неразрывно связан с поступлением в организм йода. Если в регионе проживания в воде и почве имеется дефицит йода, его бывает мало и в пищевых продуктах растительного и животного происхождения. В этом случае, для того, чтобы обеспечить достаточный синтез гормона, щитовидная железа детей и взрослых увеличивается в размерах, иногда очень существенно, т.е. возникает зоб. Увеличение может быть не только компенсаторным, но и патологическим, его называют эндемический зоб. Недостаток йода в пищевом рационе лучше всего компенсируют морская капуста и другие морепродукты, йодированная соль, столовая минеральная вода, содержащая йод, хлебобулочные изделия с йодными добавками. Однако избыточное поступление йода в организм создает нагрузку на щитовидную железу и может привести к тяжелым последствиям.

Гормоны щитовидной железы

Эффекты тироксина и трийодтиронина

Основной:

  • активируют генетический аппарат клетки, стимулируют обмен веществ, потребление кислорода и интенсивность окислительных процессов

Метаболические:

  • белковый обмен: стимулируют синтез белка, но в случае, когда уровень гормонов превышает норму, преобладает катаболизм;
  • жировой обмен: стимулируют липолиз;
  • углеводный обмен: при гиперпродукции стимулируют гликогенолиз, уровень глюкозы крови повышается, активизируется ее поступление внутрь клеток, активируют инсулиназу печени

Функциональные:

  • обеспечивают развитие и дифференцировку тканей, особенно нервной;
  • усиливают эффекты симпатической нервной системы за счет повышения количества адренорецепторов и угнетения моноаминооксидазы;
  • просимпатические эффекты проявляются в увеличении частоты сердечных сокращений, систолического объема, артериального давления, частоты дыхания, перистальтики кишечника, возбудимости ЦНС, повышении температуры тела

Проявления изменения продукции тироксина и трийодтиронина

Сравнительная характеристика недостаточной продукции соматотропина и тироксина

Влияние гормонов щитовидной железы на функции организма

Характерное действие гормонов щитовидной железы (тироксина и трийодтиронина) — усиление энергетического обмена. Введение всегда сопровождается увеличением потребления кислорода, а удаление щитовидной железы — его снижением. При введении гормона повышается обмен веществ, увеличивается количество освобождаемой энергии, повышается температура тела.

Тироксин усиливает расходование . Возникают похудание и интенсивное потребление тканями глюкозы из крови. Убыль глюкозы из крови возмещается ее пополнением за счет усиленного распада гликогена в печени и мышцах. Снижаются запасы липидов в печени, уменьшается количество холестерина в крови. Увеличивается выведение из организма воды, кальция и фосфора.

Гормоны щитовидной железы вызывают повышенную возбудимость, раздражимость, бессонницу, эмоциональную неуравновешенность.

Тироксин увеличивает минутный объем крови и частоту сердечных сокращений. Тиреоидный гормон необходим для овуляции, он способствует сохранению беременности, регулирует функцию молочных желез.

Рост и развитие организма также регулируются щитовидной железой: снижение ее функции вызывает остановку роста. Тиреоидный гормон стимулирует кроветворение, увеличивает секрецию желудка, кишечника и секрецию молока.

Кроме йодсодержащих гормонов, в щитовидной железе образуется тиреокальцитонин, снижающий содержание кальция в крови. Тиреокальцитонин является антагонистом паратгормона околощитовидных желез. Тиреокальцитонин действует на костную ткань, усиливает активность остеобластов и процесс минерализации. В почках и кишечнике гормон угнетает реабсорбцию кальция и стимулирует обратное всасывание фосфатов. Реализация этих эффектов приводит к гипокальциемии.

Гипер- и гипофункция железы

Гиперфункция (гипертиреоз) служит причиной заболевания, называемого базедовой болезнью. Основные симптомы заболевания: зоб, пучеглазие, увеличение обмена веществ, частоты сердечных сокращений, повышение потливости, двигательной активности (суетливости), раздражительность (капризность, быстрая смена настроения, эмоциональная неустойчивость), быстрая утомляемость. Зоб образуется за счет диффузного увеличения щитовидной железы. Сейчас методы лечения настолько эффективны, что тяжелые случаи заболевания встречаются довольно редко.

Гипофункция (гипотиреоз) щитовидной железы, возникающая в раннем возрасте, до 3-4 лет, вызывает развитие симптомов кретинизма. Дети, страдающие кретинизмом, отстают в физическом и умственном развитии. Симптомы заболевания: карликовый рост и нарушением пропорций тела, широкая, глубоко ввалившаяся переносица, широко расставленные глаза, открытый рот и постоянно высунутый язык, так как он не помешается во рту, короткие и изогнутые конечности, тупое выражение лица. Продолжительность жизни таких людей обычно не превышает 30-40 лет. В первые 2-3 месяца жизни можно добиться последующего нормального психического развития. Если лечение начинается в годовалом возрасте, то 40% детей, подвергшихся этому заболеванию, остаются на очень низком уровне психического развития.

Гипофункция щитовидной железы у взрослых приводит к возникновению заболевания, называемого микседемой, или слизистым отеком. При этом заболевании понижается интенсивность обменных процессов (на 15-40%), температура тела, реже становится пульс, снижается АД, появляется отечность, выпадают волосы, ломаются ногти, лицо становится бледное, безжизненное, маскообразное. Больные отличаются медлительностью, сонливостью, плохой памятью. Микседема — медленно прогрессирующее заболевание, которое при отсутствии лечения приводит к полной инвалидности.

Регуляция функции щитовидной железы

Специфическим регулятором деятельности щитовидной железы является йод, сам гормон щитовидной железы и ТТГ (Тиреотропный гормон). Йод в малых дозах увеличивает секрецию ТТГ, а в больших дозах угнетает ее. Щитовидная железа находится под контролем ЦНС. Такие пищевые продукты, как капуста, брюква, турнепс, угнетают функцию щитовидной железы. Выработка тироксина и трийодтиронина резко усиливается в условиях длительного эмоционального возбуждения. Отмечено также, что секреция этих гормонов ускоряется при снижении температуры тела.

Проявления нарушений эндокринной функции щитовидной железы

При повышении функциональной активности щитовидной железы и избыточной продукции тиреоидных гормонов возникает состояние гипертиреоза (гипертиреоидизма ), характеризующееся повышением в крови уровня тиреоидных гормонов. Проявления этого состояния объясняются эффектами тирсоидных гормонов в повышенных концентрациях. Так, из-за повышения основного обмена (гиперметаболизма) у больных наблюдается небольшое повышение температуры тела (гипертермия). Уменьшается масса тела несмотря на сохраненный или повышенный аппетит. Это состояние проявляется увеличением потребности кислорода, тахикардией, увеличением сократимости миокарда, увеличением систолического АД, увеличением вентиляции легких. Повышается активность СПС, увеличивается число р-адренореценторов, развивается потливость, непереносимость тепла. Повышается возбудимость и эмоциональная лабильность, может появиться тремор конечностей и другие изменения в организме.

Повышенное образование и секрецию тиреоидных гормонов способны вызывать ряд факторов, от правильного выявления которых зависит выбор метода коррекции функции щитовидной железы. Среди них факторы, вызывающие гиперфункцию фолликулярных клеток щитовидной железы (опухоли железы, мутация G-белков) и повышение образования и секреции тиреоидных гормонов. Гиперфункция тироцитов наблюдается при избыточной стимуляции рецепторов тиротропина повышенным содержанием ТТГ, например при опухолях гипофиза, или сниженной чувствительности рецепторов тирсоидных гормонов в тиротрофах аденогипофиза. Частой причиной гиперфункции тироцитов, увеличения размеров железы является стимуляция рецепторов ТТГ антителами, вырабатываемыми к ним при аутоиммунном заболевании, названном болезнью Грейвса — Базедова (рис. 1). Временное повышение уровня тирсоидных гормонов в крови может развиться при разрушении тироцитов вследствие воспалительных процессов в железе (токсический тиреоидит Хашимото), приеме избыточного количества тиреоидных гормонов и препаратов йода.

Повышение уровня тиреоидных гормонов может проявляться тиреотоксикозом ; в этом случае говорят о гипертиреозе с тиреотоксикозом. Но тиреотоксикоз может развиться при введении в организм избыточного количества тиреоидных гормонов, в отсутствие гипертиреоза. Описано развитие тиреотоксикоза вследствие повышения чувствительности рецепторов клеток к тиреоидным гормонам. Известны и противоположные случаи, когда чувствительность клеток к тиреоидным гормонам снижена и развивается состояние резистентности к гормонам щитовидной железы.

Пониженное образование и секреция тиреоидных гормонов могут вызываться множеством причин, часть из которых является следствием нарушения механизмов регуляции функции щитовидной железы. Так, гипотиреоз (гипотиреоидизм) может развиться при снижении образования ТРГ в гипоталамусе (опухоли, кисты, облучение, энцефалиты в области гипоталамуса и др.). Такой гипотиреоз получил название третичного. Вторичный гипотиреоз развивается вследствие недостаточного образования ТГГ гипофизом (опухоли, кисты, облучение, хирургическое удаление части гипофиза, энцефалиты и др.). Первичный гипотиреоз может развиться вследствие аутоиммунного воспаления железы, при дефиците йода, селена, непомерно избыточном приеме зобогенных продуктов — гойтрогенов (некоторые сорта капусты), после облучения железы, длительном приеме ряда лекарств (препараты йода, лития, антитиреоидные средства) и др.

Рис. 1. Диффузное увеличение размеров щитовидной железы у девочки 12 лет с аутоиммунным тиреоидитом (Т. Фоли, 2002)

Недостаточная продукция тиреоидных гормонов приводит к снижению интенсивности метаболизма, потребления кислорода, вентиляции, сократимости миокарда и минутного объема крови. При тяжелом гипотиреозе может развиться состояние, получившее название микседема — слизистый отек. Он развивается из-за накопления (возможно под влиянием повышенного уровня ТТГ) мукополисахаридов и воды в базальных слоях кожи, что приводит к одутловатости лица и тестообразной консистенции кожи, а также к повышению массы тела, несмотря на снижение аппетита. У больных микседемой могут развиться психическая и двигательная заторможенность, сонливость, зябкость, снижение интеллекта, тонуса симпатического отдела АНС и другие изменения.

В осуществлении сложных процессов образования тиреоидных гормонов участвуют ионные насосы, обеспечивающие поступление йода, ряд ферментов белковой природы, среди которых ключевую роль играет тиреопероксидаза. В ряде случаев у человека может иметь место генетический дефект, ведущий к нарушению их структуры и функции, что сопровождается нарушением синтеза тиреоидных гормонов. Могут наблюдаться генетические дефекты структуры тиреоглобулина. Против тиреопероксидазы и тиреоглобулина нередко вырабатываются аутоантитела, что также сопровождается нарушением синтеза гормонов щитовидной железы. На активность процессов захвата йода и его включения в состав тиреоглобулина, можно влиять с помощью ряда фармакологических средств, регулируя синтез гормонов. Па их синтез можно влиять приемом препаратов йода.

Развитие гипотиреоза у плода и новорожденных способно привести к появлению кретинизма - физического (малый рост, нарушение пропорций тела), полового и умственного недоразвития. Эти изменения могут предотвращаться при проведении адекватной заместительной терапии тиреоидными гормонами в первые месяцы после рождения ребенка.

Строение щитовидной железы

Является по своим массе и размерам самым крупным эндокринным органом. Она обычно состоит из двух долей, соединенных перешейком, и располагается на передней поверхности шеи, будучи фиксированной к передней и боковой поверхностям трахеи и гортани соединительной тканью. Средний вес нормальной щитовидной железы у взрослых колеблется в пределах 15-30 г, однако ее размеры, форма и топография расположения широко варьируют.

Функционально активная щитовидная железа первой из эндокринных желез появляется в процессе эмбриогенеза. Закладка щитовидной железы у плода человека формируется на 16-17-й день внутриутробного развития в виде скопления энтодермальных клеток у корня языка.

На ранних этапах развития (6-8 недель) зачаток железы представляет собой пласт интенсивно пролиферирующих эпителиальных клеток. В этот период происходит быстрый рост железы, но в ней еще не образуются гормоны. Первые признаки их секреции выявляются па 10-11-й неделях (у плодов размером около 7 см), когда клетки железы уже способны поглощать йод, образовывать коллоид и синтезировать тироксин.

Под капсулой появляются единичные фолликулы, в которых формируются фолликулярные клетки.

В зачаток щитовидной железы из 5-й пары жаберных карманов врастают парафолликулярные (околофолликулярные), или С-клетки. К 12-14-й неделям развития плода вся правая доля щитовидной железы приобретает фолликулярное строение, а левая — на две недели позже. К 16-17-й неделям щитовидная железа плода уже полностью дифференцирована. Щитовидные железы плодов 21-32-недельного возраста характеризуются высокой функциональной активностью, которая продолжает нарастать до 33-35 недель.

В паренхиме железы различают три типа клеток: А, В и С. Основную массу клеток паренхимы составляют тироциты (фолликулярные, или А-клетки). Они выстилают стенку фолликулов, в полостях которых располагается коллоид. Каждый фолликул окружен густой сетью капилляров, в просвет которых всасываются секретируемые щитовидной железой тироксин и трийодтиронин.

В неизмененной щитовидной железе фолликулы равномерно распределены по всей паренхиме. При низкой функциональной активности железы тироциты, как правило, плоские, при высокой — цилиндрические (высота клеток пропорциональна степени активности осуществляемых в них процессов). Коллоид, заполняющий просветы фолликулов, представляет собой гомогенную вязкую жидкость. Основную массу коллоида составляет тиреоглобулин, секретируемый тироцитами в просвет фолликула.

В-клетки (клетки Ашкенази — Гюртля) крупнее тироцитов, имеют эозинофильную цитоплазму и округлое центрально расположенное ядро. В цитоплазме этих клеток обнаружены биогенные амины, в том числе серотонин. Впервые В-клетки появляются в возрасте 14-16 лет. В большом количестве они встречаются у людей в возрасте 50-60 лет.

Парафолликулярные, или С-клетки (в русской транскрипции К-клетки), отличаются от тироцитов отсутствием способности поглощать йод. Они обеспечивают синтез кальцитонина — гормона, участвующего в регуляции обмена кальция в организме. С-клетки крупнее тироцитов, в составе фолликулов расположены, как правило, одиночно. Их морфология характерна для клеток, синтезирующих белок на экспорт (присутствуют шероховатая эндоплазматическая сеть, комплекс Гольджи, секреторные гранулы, митохондрии). На гистологических препаратах цитоплазма С-клеток выглядит светлее цитоплазмы тироцитов, отсюда их название — светлые клетки.

Если на тканевом уровне основной структурно-функциональной единицей щитовидной железы являются фолликулы, окруженные базальными мембранами, то одной из предполагаемых органных единиц щитовидной железы могут быть микродольки, в состав которых входят фолликулы, С-клетки, гемокапилляры, тканевые базофилы. В состав микродольки входит 4-6 фолликулов, окруженных оболочкой из фибробластов.

К моменту рождения щитовидная железа функционально активна и структурно вполне дифференцирована. У новорожденных фолликулы мелкие (диаметром 60-70 мкм), по мере развития детского организма их размер увеличивается и достигает у взрослых 250 мкм. В первые две недели после рождения фолликулы интенсивно развиваются, к 6 месяцам они хорошо развиты во всей железе, а к году достигают диаметра 100 мкм. В период полового созревания отмечается усиление роста паренхимы и стромы железы, повышение ее функциональной активности, проявляющееся увеличением высоты тироцитов, возрастанием в них активности ферментов.

У взрослого человека щитовидная железа прилежит к гортани и верхней части трахеи таким образом, что перешеек располагается на уровне II-IV трахеальных полуколец.

Масса и размеры щитовидной железы в течение жизни изменяются. У здорового новорожденного масса железы варьирует от 1,5 до 2 г. К концу первого года жизни масса удваивается и медленно нарастает к периоду полового созревания до 10-14 г. Нарастание массы особенно заметно в возрасте 5-7 лет. Масса щитовидной железы в возрасте 20-60 лет колеблется от 17 до 40 г.

Щитовидная железа имеет исключительно обильное кровоснабжение по сравнению с другими органами. Объемная скорость кровотока в щитовидной железе составляет около 5 мл/г в минуту.

Щитовидная железа кровоснабжается парными верхними и нижними щитовидными артериями. Иногда в кровоснабжении участвует непарная, самая нижняя артерия (a.thyroidea ima ).

Отток венозной крови от щитовидной железы осуществляется по венам, образующим сплетения в окружности боковых долей и перешейка. Щитовидная железа имеет разветвленную сеть лимфатических сосудов, по которым лимфа опекает в глубокие шейные лимфатические узлы, затем в надключичные и латеральные шейные глубокие лимфатические узлы. Выносящие лимфатические сосуды латеральных шейных глубоких лимфатических узлов образуют на каждой стороне шеи яремный ствол, который впадает слева в грудной проток, а справа — в правый лимфатический проток.

Щитовидная железа иннервируется постганглионарными волокнами симпатической нервной системы из верхнего, среднего (главным образом) и нижнего шейных узлов симпатического ствола. Щитовидные нервы образуют сплетения вокруг сосудов, подходящих к железе. Считают, что эти нервы выполняют вазомоторную функцию. В иннервации щитовидной железы участвует также блуждающий нерв, несущий парасимпатические волокна к железе в составе верхнего и нижнего гортанных нервов. Синтез йодсодержащих гормонов щитовидной железы Т 3 и Т 4 осуществляется фолликулярными А-клетками -тироцитами. Гормоны Т 3 и Т 4 являются йодированными.

Гормоны Т 4 и Т 3 являются йодированными производными аминокислоты L-тирозина. Йод, входящий в их структуру, составляет 59-65% массы молекулы гормона. Потребность йода для нормального синтеза тиреоидных гормонов представлена в табл. 1. Последовательность процессов синтеза упрощенно представляется следующим образом. Йод в форме йодида захватывается из крови с помощью ионного насоса, накапливается в тироцитах, окисляется и включается в фенольное кольцо тирозина в составе тиреоглобулина (органификация йода). Йодирование тиреоглобулина с образованием моно- и дийодтирозинов происходит на границе между тироцитом и коллоидом. Далее осуществляется соединение (конденсация) двух молекул дийодтирозинов с образованием Т 4 или дийодтирозина и монойодтирозина с образованием T 3 . Часть тироксина подвергается в щитовидной железе дейодированию с образованием трийодтиронина.

Таблица 1. Нормы потребления йода (ВОЗ, 2005. по И. Дедов и соавт. 2007)

Йодированный тиреоглобулин вместе с присоединенными к нему Т 4 и Т 3 накапливается и хранится в фолликулах в виде коллоида, выполняя роль депо-тиреоидных гормонов. Высвобождение гормонов происходит в результате пиноцитоза фолликулярного коллоида и последующего гидролиза тиреоглобулина в фаголизосомах. Высвобожденные Т 4 и Т 3 секретируются в кровь.

Базальная суточная секреция щитовидной железой составляет около 80 мкг Т 4 и 4 мкг T 3 При этом тироциты фолликулов щитовидной железы являются единственным источником образования эндогенного Т 4 . В отличие от Т 4 , Т 3 образуется в тироцитах в небольшом количестве, а основное образование этой активной формы гормона осуществляется в клетках всех тканей организма путем дейодирования около 80% Т 4 .

Таким образом, кроме железистого депо тиреоидных гормонов в организме имеется второе — внежелезистое депо тиреоидных гормонов, представленное гормонами, связанными с транспортными белками крови. Роль этих депо заключается в предотвращении быстрого снижения уровня тиреоидных гормонов в организме, которое могло бы произойти при кратковременном снижении их синтеза, например при непродолжительном снижении поступления в организм йода. Связанная форма гормонов в крови предотвращает их быстрое выведение из организма через почки, защищает клетки от неконтролируемого поступления в них гормонов. В клетки поступают свободные гормоны в количествах, соизмеримых с их функциональными потребностями.

Тироксин, поступающий в клетки, подвергается дейодированию под действием ферментов дейодиназ, и при отщеплении одного атома йода из него образуется более активный гормон — трийодтиронин. При этом в зависимости от путей дейодирования из Т 4 может образовываться как активный Т 3 , так и неактивный реверсивный Т 3 (3,3",5"-трийод-L-тиронин — рТ 3). Эти гормоны путем последовательного дейодирования превращаются в метаболиты Т 2 , затем Т 1 и Т 0 , которые конъюгируют с глюкуроновой кислотой или сульфатом в печени и экскретируются с желчью и через почки из организма. Не только Т 3 , но и другие метаболиты тироксина также могут проявлять биологическую активность.

Механизм действия тирсоидных гормонов обусловлен прежде всего их взаимодействием с ядерными рецепторами, которыми являются негистоновые белки, располагающиеся непосредственно в ядре клеток. Существует три основных подтипа рецепторов тирсоидных гормонов: ТРβ-2, ТРβ-1 и ТРа-1. В результате взаимодействия с Т 3 рецептор активируется, комплекс гормон-рецептор вступает во взаимодействие с гормон- чувствительным участком ДНК и регулирует транскрипционную активность генов.

Выявлен ряд негеномных эффектов тирсоидных гормонов в митохондриях, плазматической мембране клеток. В частности, тиреоидные гормоны могут изменять проницаемость мембран митохондрий для протонов водорода и, разобщая процессы дыхания и фосфорилирования, снижают синтез АТФ и повышают образование тепла в организме. Они изменяют проницаемость плазматических мембран для ионов Са 2+ и оказывают влияние на многие внутриклеточные процессы, осуществляемые при участии кальция.

Основные эффекты и роль тиреоидных гормонов

Нормальное функционирование всех без исключения органов и тканей организма возможно при нормальном уровне тиреоидных гормонов, так как они влияют на рост и созревание тканей, энергообмен и обмен белков, липидов, углеводов, нуклеиновых кислот, витаминов и других веществ. Выделяют метаболические и другие физиологические эффекты тиреоидных гормонов.

Метаболические эффекты:

  • активация окислительных процессов и увеличение основного обмена, усиление поглощения кислорода тканями, повышение теплообразования и температуры тела;
  • стимуляция синтеза белка (анаболическое действие) в физиологических концентрациях;
  • усиление окисления жирных кислот и снижение их уровня в крови;
  • гипергликемия за счет активации гликогенолиза в печени.

Физиологические эффекты:

  • обеспечение нормальных процессов роста, развития, дифференцировки клеток, тканей и органов, в том числе ЦНС (миелинизация нервных волокон, дифференцирование нейронов), а также процессов физиологической регенерации тканей;
  • усиление эффектов СНС через повышение чувствительности адренорецепторов к действию Адр и НА;
  • повышение возбудимости ЦНС и активация психических процессов;
  • участие в обеспечении репродуктивной функции (способствуют синтезу ГР, ФСГ, ЛГ и реализации эффектов инсулиноподобного фактора роста — ИФР);
  • участие в формировании адаптивных реакций организма к неблагоприятным воздействиям, в частности, холода;
  • участие в развитии мышечной системы, увеличение силы и скорости мышечных сокращений.

Регуляция образования, секреции и превращений тиреоидных гормонов осуществляется сложными гормональными, нервными и другими механизмами. Их знание позволяет диагностировать причины снижения или повышения секреции тиреоидных гормонов.

Ключевую роль в регуляции секреции тиреоидных гормонов играют гормоны гипоталамо-гипофизарно-тиреоидной оси (рис. 2). Базальная секреция тиреоидных гормонов и ее изменения при различных воздействиях регулируется уровнем ТРГ гипоталамуса и ТТГ гипофиза. ТРГ стимулирует продукцию ТТГ, который оказывает стимулирующее влияние практически на все процессы в щитовидной железе и секрецию Т 4 и Т 3 . В нормальных физиологических условиях образование ТРГ и ТТГ контролируются уровнем свободных Т 4 и Т. в крови на основе механизмов отрицательной обратной связи. При этом секреция ТРГ и ТТГ угнетается высоким уровнем тиреоидных гормонов в крови, а при их низкой концентрации повышается.

Рис. 2. Схематическое изображение регуляции образования и секреции гор монов в оси гипоталамус — гипофиз — щитовидная железа

Важное значение в механизмах регуляции гормонов гипоталамо-гипофизарно-тиреоидной оси имеет состояние чувствительности рецепторов к действию гормонов на различных уровнях оси. Изменения в структуре этих рецепторов или их стимуляция аутоантителами могут быть причинами нарушения образования гормонов щитовидной железы.

Образование гормонов в самой железе зависит от поступления в нее из крови достаточного количества йодида — 1-2 мкг на 1 кг массы тела (см. рис. 2).

При недостаточном поступлении йода в организм в нем развиваются адаптационные процессы, которые направлены на максимально бережное и эффективное использование имеющегося в нем йода. Они заключаются в усилении кровотока через железу, более эффективном захвате йода щитовидной железой из крови, изменении процессов синтеза гормонов и секреции Ту Адаптационные реакции запускаются и регулируются тиротропином, уровень которого при дефиците йода возрастает. Если суточное поступление йода в организм составляет менее 20 мкг в течение продолжительного времени, то длительная стимуляция клеток щитовидной железы ведет к разрастанию ее ткани и развитию зоба.

Саморегуляторные механизмы железы в условиях дефицита йода обеспечивают его больший захват тироцитами при более низком уровне йода в крови и более эффективную реутилизацию. Если в организм доставляется в сутки около 50 мкг йода, то за счет увеличения скорости его поглощения тироцитами из крови (йод пищевого происхождения и реутилизируемый йод из продуктов метаболизма) в щитовидную железу поступает около 100 мкг йода в сутки.

Поступление из желудочно-кишечного тракта 50 мкг йода в сутки является тем порогом, при котором еще сохраняется длительная способность щитовидной железы накапливать его (включая реутилизированный йод) в количествах, когда содержание неорганического йода в железе остается на нижнем пределе нормы (около 10 мг). Ниже этого порогового поступления йода в организм за сутки, эффективность повышенной скорости захвата йода щитовидной железой оказывается недостаточной, поглощение йода и содержание его в железе уменьшаются. В этих случаях развитие нарушений функции щитовидной железы становится более вероятным.

Одновременно с включением адаптационных механизмов щитовидной железы при дефиците йода наблюдаются снижение его экскреции из организма с мочой. В итоге адаптационные экскреторные механизмы обеспечивают выведение из организма йода за сутки в количествах, эквивалентных его более низкому суточному поступлению из желудочно-кишечного тракта.

Поступление в организм подпороговых концентраций йода (менее 50 мкг за сутки) ведет к увеличению секреции ТТГ и его стимулирующего влияния на щитовидную железу. Это сопровождается ускорением йодирования тирозильных остатков тиреоглобулина, увеличением содержания монойодтнрозинов (МИТ) и снижением — дийодтирозинов (ДИТ). Отношение МИТ/ДИТ увеличивается, и, как следствие, уменьшается синтез Т 4 и возрастает синтез Т 3 . Отношение Т 3 /Т 4 возрастает в железе и крови.

При выраженном дефиците йода имеет место снижение в сыворотке уровня Т 4 , повышение уровня ТТГ и нормальное, либо повышенное содержание Т 3 . Механизмы этих изменений точно не выяснены, но скорее всего, это является результатом увеличения скорости образования и секреции Т 3 , увеличения соотношения T 3 T 4 и увеличения превращения Т 4 в Т 3 в периферических тканях.

Увеличение образования Т 3 в условиях йодного дефицита оправдано с точки зрения достижения наибольших конечных метаболических эффектов ТГ при наименьшей их «йодной» емкости. Известно, что влияние на метаболизм Т 3 примерно в 3-8 раз более сильное, чем Т 4 , но так как Т 3 содержит в своей структуре только 3 атома йода (а не 4 как Т 4), то для синтеза одной молекулы Т 3 надо только 75% йодных затрат, по сравнению с синтезом Т 4 .

При очень значительном дефиците йода и понижении функции щитовидной железы на фоне высокого уровня ТТГ, уровни Т 4 и Т 3 снижаются. В сыворотке крови появляется больше тиреоглобулина, уровень которого коррелирует с уровнем ТТГ.

Дефицит йода у детей оказывает более сильное, чем у взрослых влияние на процессы метаболизма в тироцитах щитовидной железы. В йоддефицитных районах проживания нарушения функции щитовидной железы у новорожденных и детей встречаются значительно чаще и более выражены, чем у взрослых.

При поступлении в организм человека небольшого избытка йода усиливается степень органификации йодида, синтез ТГ и их секреция. Отмечается прирост уровня ТТГ, небольшое уменьшение уровня свободного Т 4 в сыворотке при одновременном повышении содержания в ней тиреоглобулина. Более длительное избыточное потребление йода может блокировать синтез ТГ за счет ингибирования активности ферментов, вовлеченных в биосинтетические процессы. Уже к концу первого месяца отмечается увеличение размеров щитовидной железы. При хроническом избыточном поступлении избытка йода в организм может развиться гипотиреоидизм, но если поступление йода в организм нормализовалось, то размеры и функция щитовидной железы могут возвратиться к исходным значениям.

Источниками йода, которые могут быть причиной избыточного его поступления в организм, часто являются йодированная соль, комплексные поливитаминные препараты, содержащие минеральные добавки, пищевые продукты и некоторые йодсодержащие лекарства.

Щитовидная железа располагает внутренним регулирующим механизмом, который позволяет эффективно справляться с избыточным поступлением йода. Хотя поступление йода в организм может колебаться, концентрация ТГ и ТТГ в сыворотке крови может оставаться неизменной.

Считается, что максимальное количество йода, которое при поступлении в организм еще не вызывает изменения функции щитовидной железы, составляет для взрослых около 500 мкг в день, но при этом наблюдается увеличение уровня секреции ТТГ на действие тиротропин-рилизинг гормона.

Поступление йода в количествах 1,5-4,5 мг в день приводит к значительному уменьшению содержания в сыворотке, как общего так и свободного Т 4 , повышению уровня ТТГ (уровень Т 3 остается неизмененным).

Эффект подавления избытком йода функции щитовидной железы имеет место и при тиреотоксикозе, когда путем приема избыточного количества йода (по отношению к естественной суточной потребности) устраняют симптомы тиреотоксикоза и понижают сывороточный уровень ТГ. Однако при продолжительном поступлении в организм избытка йода проявления тиреотоксикоза возвращаются вновь. Полагают, что временное понижение уровня ТГ в крови при избыточном поступлении йода обусловлено прежде всего угнетением секреции гормонов.

Поступление в организм небольших избыточных количеств йода ведет к пропорциональному увеличению его захвата щитовидной железой, до некоторого насыщающего значения поглощаемого йода. При достижении этого значения захват йода железой может уменьшаться несмотря на поступление его в организм в больших количествах. В этих условиях, под влиянием ТТГ гипофиза активность щитовидной железы может изменяться в широких пределах.

Поскольку при поступлении в организм избытка йода уровень ТТГ повышается, то следовало бы ожидать не первоначального подавления, а активации функции щитовидной железы. Однако установлено, что йод ингибирует увеличение активности аденилатциклазы, подавляет синтез тиреопероксидазы, тормозит образование пероксида водорода в ответ на действие ТТГ, хотя связывание ТТГ с рецептором клеточной мембраны тироцитов не нарушается.

Уже отмечалось, что подавление функции щитовидной железы избытком йода носит временный характер и вскоре функция восстанавливается несмотря на продолжающееся поступление избыточных количеств йода в организм. Наступает адаптация или ускользание щитовидной железы из-под влияния йода. Одним из главных механизмов этой адаптации является снижение эффективности захвата и транспорта йода в тироцит. Поскольку полагают, что транспорт йода через базальную мембрану тироцита связан с функцией Na+/K+ АТФ-азы, то можно ожидать, что избыток йода может оказывать влияние на ее свойства.

Несмотря на существование механизмов адаптации щитовидной железы к недостаточному или избыточному поступлению йода для сохранения ее нормальной функции в организме должен поддерживаться йодный баланс. При нормальном уровне йода в почве и воде за сутки в организм человека с растительной пищей и в меньшей степени с водой может поступать до 500 мкг йода в форме йодида или йодата, которые превращаются в йодиды в желудке. Йодиды быстро всасываются из желудочно-кишечного тракта и распределяются во внеклеточной жидкости организма. Концентрация йодида во внеклеточных пространствах остается низкой, так как часть йодида быстро захватывается из внеклеточной жидкости щитовидной железой, а оставшийся — выводится из организма ночками. Скорость захвата йода щитовидной железой обратно пропорциональна скорости его выведения почками. Йод может экскретироваться слюнными и другими железами пищеварительного тракта, но затем снова реабсорбируется из кишечника в кровь. Около 1-2% йода эскретируется потовыми железами, а при усиленном потоотделении доля выделяемого с йотом йода может достигать 10%.

Из 500 мкг йода, всосавшегося из верхних отделов кишечника в кровь, около 115 мкг захватывается щитовидной железой и около 75 мкг йода используется в сутки на синтез ТГ, 40 мкг возвращается обратно во внеклеточную жидкость. Синтезированные Т 4 и Т 3 разрушаются в последующем в печени и других тканях, высвобождающийся при этом йод в количестве 60 мкг попадает в кровь и внеклеточную жидкость, а около 15 мкг йода, конъюгированного в печени с глюкуронидами или сульфатами, выводятся в составе желчи.

В общем объеме кровь — внеклеточная жидкость, составляющая у взрослого человека около 35% массы тела (или около 25 л), в которой растворено около 150 мкг йода. Иодид свободно фильтруется в клубочках и примерно на 70% пассивно реабсорбируется в канальцах. За сутки около 485 мкг йода выводится из организма с мочой и около 15 мкг — с фекалиями. Средняя концентрация йода в плазме крови поддерживается на уровне около 0,3 мкг/л.

При снижении поступления йода в организм уменьшается его количество в жидкостях тела, снижается выведение с мочой, а щитовидная железа может увеличить его поглощение на 80-90%. Щитовидная железа способна запасать йод в форме йодтиронинов и йодированных тирозинов в количествах, близких к 100-дневной потребности организма. За счет этих сберегающих йод механизмов и депонированного йода синтез ТГ в условиях дефицита поступления йода в организм может оставаться ненарушенным на период времени до двух месяцев. Более продолжительная йодная недостаточность в организме ведет к снижению синтеза ТГ несмотря на его максимальный захват железой из крови. Увеличение поступления в организм йода может ускорять синтез ТГ. Однако, если ежедневное потребление йода превысит 2000 мкг, накопление йода в щитовидном железе достигает уровня, когда ингибируются захват йода и биосинтез гормонов. Хроническая йодная интоксикация возникает, когда его ежедневное поступление в организм более чем в 20 раз превышает суточную потребность.

Поступающий в организм йодид выводится из него главным образом с мочой, поэтому его суммарное содержание в объеме суточной мочи является наиболее точным показателем поступления йода и может использоваться для оценки йодного баланса в целостном организме.

Таким образом, достаточное поступление экзогенного йода необходимо для синтеза ТГ в количествах, адекватных потребностям организма. При этом нормальная реализация эффектов ТГ зависит от эффективности их связывания с ядерными рецепторами клеток, в состав которых входит цинк. Следовательно, поступление в организм достаточного количества этого микроэлемента (15 мг/сут) также важно для проявления эффектов ТГ на уровне ядра клетки.

Образование в периферических тканях активных форм ТГ из тироксина происходит под действием дейодиназ, для проявления активности которых необходимо присутствие селена. Установлено, что поступление в организм взрослого человека селена в количествах 55-70 мкг в день является необходимым условием для образования в периферических тканях достаточного количества T v

Нервные механизмы регуляции функции щитовидной железы осуществляются через влияние нейромедиаторов СПС и ПСНС. СНС иннервирует своими постганглионарными волокнами сосуды железы и железистую ткань. Норадреналин повышает уровень цАМФ в тироцитах, усиливает поглощение ими йода, синтез и секрецию тиреоидных гормонов. Волокна ПСНС также подходят к фолликулам и сосудам щитовидной железы. Повышение тонуса ПСНС (или введение ацетилхолина) сопровождается увеличением уровня цГМФ в тироцитах и снижением секреции тиреоидных гормонов.

Под контролем ЦНС находится образование и секреция ТРГ мелкоклеточными нейронами гипоталамуса, а следовательно, секреция ТТГ и гормонов щитовидной железы.

Уровень гормонов щитовидной железы в клетках тканей, их превращение в активные формы и метаболиты регулируется системой дейодиназ — ферментов, активность которых зависит от присутствия в клетках селеноцистеина и поступления в организм селена. Имеется три типа дейодиназ (Д1, Д2, ДЗ), которые по-разному распределены в различных тканях организма и определяют пути превращения тироксина в активный Т 3 , или неактивный рТ 3 и другие метаболиты.

Эндокринная функция парафолликулярных К-клеток щитовидной железы

Эти клетки синтезируют и секретируют гормон кальцитонин.

Кальцитонип (тиреокальцитоиин) — пептид, состоящий из 32 аминокислотных остатков, содержание в крови составляет 5-28 пмоль/л, действует на клетки-мишени, стимулируя T-TMS-мембранные рецепторы и повышая в них уровень цАМФ и ИФЗ. Может синтезироваться в тимусе, легких, ЦНС и других органах. Роль внетиреоидного кальцитонина неизвестна.

Физиологическая роль кальцитонина — регуляция уровня кальция (Са 2+) и фосфатов (РО 3 4 -) в крови. Функция реализуется за счет нескольких механизмов:

  • угнетения функциональной активности остеокластов и подавления резорбции костной ткани. Это снижает выведение ионов Са 2+ и РО 3 4 - из костной ткани в кровь;
  • снижения реабсорбции ионов Са 2+ и РО 3 4 - из первичной мочи в почечных канальцах.

За счет этих эффектов повышение уровня кальцитонина ведет к понижению содержания ионов Са 2 и РО 3 4 - в крови.

Регуляции секреции кальцитонина осуществляется при непосредственном участии Са 2 в крови, концентрация которого в норме составляет 2,25-2,75 ммоль/л (9-11 мг%). Повышение уровня кальция в крови (гипсркальцисмия) вызывает активную секрецию кальцитонина. Понижение уровня кальция ведет к снижению секреции гормона. Стимулируют секрецию кальцитонина катехоламины, глюкагон, гастрин и холецистокинин.

Повышение уровня кальцитонина (в 50-5000 раз выше нормы) наблюдается при одной из форм рака щитовидной железы (медуллярной карциноме), развивающегося из парафоликкулярных клеток. При этом определение в крови высокого уровня кальцитонина является одним из маркеров этого заболевания.

Повышение уровня кальцитонина в крови, как и практически полное отсутствие кальцитонина после удаления щитовидной железы, может не сопровождаться нарушением обмена кальция и состояния костной системы. Эти клинические наблюдения свидетельствуют о том, что физиологическая роль кальцитонина в регуляции уровня кальция остается не до конца понятной.