Функции капилляров человека. Анатомия Кровеносных капилляров человека - информация. Капиллярный кровоток и его особенности

Артерии - кровеносные сосуды, несущие кровь от сердца к органам и тканям тела. Самая крупная артерия, отводящая кровь от сердца, составляет в диаметре 2,5 см. Диаметр мелких артерий всего лишь около 0,1 мм. Артериальные стенки, расположенных близко к сердцу, содержат много эластичных волокон, компенсирующих пульсовую волну, вызванную сокращением сердца, и тем самым обуславливают равномерное течение крови. Стенки артерий, расположенных дальше от сердца, более плотные и не столь эластичны из-за большего количества мышечных волокон в них. Многие артерии связаны между собой: при непроходимости одной ветви артерии кровь может продолжать движение по артерии, расположенной рядом.

Капилляры - тончайшие кровеносные сосуды, соединяющие венозную и артериальную системы. Длина капилляра около миллиметра, диаметр настолько мал, что сквозь него может пройти только один форменный элемент крови. Все внутренние органы и кожа пронизаны сетью капилляров.

Функция артерий

Из левого желудочка сердца насыщенную кислородом кровь аорта и артерии разносят по всему организму. Эритроциты переносят кислород. В артериальную кровь поступают все питательные вещества, которые по разветвленной кровеносной системе проникают в клетки тканей организма человека. Распространение пульсовой волны связано со способностью стенок артерий к эластичному растяжению и спаданию.

Функция капилляров

Через капилляры происходит газообмен и обмен веществ между кровью и тканями. Растворенные в плазме крови вещества вместе с водой через поры в тонких стенках капилляров попадают в клетки тканей. Жидкость с содержащимися в ней питательными веществами, прежде всего, попадает в интерстициальное (межклеточное) пространство, заполненное жидкостью. Оттуда клетки поглощают питательные вещества, которые при участии кислорода расщепляются до двуокиси углерода и воды. Двуокись углерода вместе с другими продуктами распада, образовавшимися в процессе обмена веществ, вновь попадает в капилляры, а откуда по венулам - в вены. Кровь течет обратно в правый желудочек сердца, оттуда поступает в легкие, где происходит ее насыщение кислородом, а из легких поступает в левое сердце. Откуда кровь вновь поступает в артерии, капилляры и вены.

За день через стенки капилляров фильтруется и распределяется в межклеточном пространстве около 20 л жидкости: 18 л вновь возвращается в капилляры, а 2 л поступает в кровь с лимфой. 50% всей крови течет по капиллярам, артериолам и венулам. Общая площадь поверхности сети капилляров составляет около 300 м кв. Давление крови в них составляет 12-20 мм рт. ст.

Как измерить кровяное давление?

Для измерения кровяного давления необходимо надеть манжету на плечо пациента и соединить ее с манометром прибора. Пациент должен спокойно сидеть или лежать. Затем следует найти пульс на артерии в области локтевой ямки и приложить туда воронку стетоскопа. Необходимо нагнетать давление в манжете до исчезновения тонов на артерии в области локтевой ямки. Затем открыть кран и снижать давление в манжете. Момент возникновения тонов на артерии соответствует величине систолического давления, момент исчезновения тонов соответствует диастолическому давлению в артерии. Для 30-40-летних людей систолическое кровяное давление обычно составляет 125, а диастолическое 85 мм рт. ст.

Что такое пульс?

Пульс - ритмические толчкообразные колебания артериальных стенок, вызываемые выбрасыванием крови в артериальную систему в результате сокращения сердца. Определяется на ощупь в нескольких местах (например, область запястья или виски). При ритмическом выбрасывании крови сердцем в артериальных сосудах возникают пульсовые волны, скорость которых намного выше скорости кровотока.

Нормальная частота пульса

  • У новорожденных - 140 уд/мин.
  • У детей 2 лет - 120 уд/мин.
  • У детей 4 лет - 100 уд/мин.
  • У детей 10 лет - 90 уд/мин.
  • У взрослых мужчин - 62-70 уд/мин.
  • Женщин - 75 уд/мин.

Нас очень часто волнует состояние сосудов – все мы знаем, что проблемы с ними могут привести к самым неприятным болезням, включая инсульт, варикоз, инфаркт. И практически никого не интересует – а в каком состоянии у него находятся капилляры? К капиллярам мы относимся несерьезно. И совершенно напрасно. Оказывается, именно они отвечают за наше здоровье и правильную работу системы кровообращения.

Что такое капилляры?

Капилляры – мельчайшие кровеносные сосуды, пронизывающие весь наш организм. Август Крог вычислил, что длина всех капилляров составляет почти 100 000 км. В одних только почках капилляров находится 60 км.

Их невозможно увидеть невооруженным глазом и поэтому они способны доставить кровь, а значит и питательные вещества и кислород везде. Они охватывают наше тело, словно паутина. Если прекращается капиллярное кровообращение в какой-то части тела, там прекращается приток кислорода и питательных веществ. Ткани начинают голодать и затем отмирают. Отсюда следует, что капилляры играют в организме важнейшую роль. По большому счету они даже важнее, чем крупные сосуды, ибо только они могут доставить кровь в самые отдаленные уголки тела. В чем же еще заключается роль капилляров? Об этом поговорим на нашем сайте .

Диаметр капилляров от 5 до 30 мк. Более того, эти сосуды обладают удивительной способностью – они могут менять свой диаметр почти в 2-3 раза, расширяясь или сужаясь. Если капилляры сужаются до минимума, то они не пропустят даже кровяные тельца – только плазму крови. Когда капилляры расширяются до предела, то в их просвет прекрасно попадают красные и белые кровяные тельца.

Еще клетки капиллярных сосудов способны к фагоцитозу, чего не могут клетки иных сосудов. Они могут пожирать постаревшие эритроциты, холестериновые отложения, микроорганизмы. Сквозь стенки капилляров могут проникать питательные вещества, плазма крови – именно благодаря этому качеству и происходит питание тканей организма.

Роль капилляров

Сужение и расширение капилляров крайне важно для нас. Интересно, что они сокращаются в унисон с остальными сосудами. Согласно исследованиям, сужение капилляров сопровождает повышение давления, а их расширение – понижение. Любые процессы, протекающие в организме, сопровождаются сужением или расширением капилляров.

Если в организме все хорошо, то капилляры пропускают молекулы небольших размеров, то есть только то, что они и должны доставлять – газы, соли, воду. Как только появляется воспаление или повреждаются капиллярные клетки, капилляры начинают пропускать гораздо большие молекулы. Проницаемость увеличивается, что мы видим сразу же, обнаруживая отеки. Либо спустя некоторое время сталкиваясь с последствиями зашлакованности тканей, накопления в них продуктов распада, холестериновых отходов, пигментов, жиров.

Великий физиолог и врач А. Залманов называл капилляры вторым сердцем. Он отводил главную роль в кровообращении именно капиллярам, которые, постоянно сокращаясь и расширяясь, доставляют кровь к каждой клетке тела. Это предположение подтвердили в 1936 году Вейсс и Ванг, увидев работу сосудиков методом капилляроскопии. Французские исследователи Расин и Барух исследовали состояние капилляров при помощи капилляроскопии у многих больных. Они обнаружили, что синдром хронической усталости и слабость сопровождаются тоже нарушением капиллярной циркуляции крови в тканях.

Интересно, что утром капилляры имеют меньший диаметр, а вечером расширяются. Именно с этим и связано ускорение обмена веществ к вечеру и повышение температуры. Зимой и осенью капилляры сужаются сильнее, чем летом. Некоторые исследователи считают, что именно в этом и кроется причина того, что многие болезни обостряются именно в этот период. Во время рентгенотерапии число кожных капилляров сокращается. И это тоже лежит в основе того, что после этой процедуры люди чувствуют себя нехорошо.

На основании изучения роли капилляров Залманов сделал вывод, что в развитии многих болезней повинно нарушение работы капилляров. Разбалансированное их сокращение и отмирание или закупорка приводят к болезням и смерти. При этом человек стареет и умирает от всем известных болезней старости. А причиной старения оказывается старение и нарушение работы капилляров. Последователи Залманова утверждают, что без изучения капилляров и их роли медицина так и не разберется в истинных причинах, приводящих к болезням. В подтверждение этого мнения надо сказать, что до сих пор о многих болезнях говорится: причина их возникновения (этиология) доподлинно неизвестна.

Если коротко резюмировать, то капилляры призваны обеспечивать полноценный обмен веществ, газообмен в тканях, участвуют в синтезе белков, переработке стареющих клеток, являются барьером на пути инфекций.

К чему приводит нарушение работы капилляров

Уже доказано, что варикозное расширение вен начинается с нарушения кровообращения в венозных капиллярах. И только потом процесс возникает в других, более крупных венах.

Самые загадочные и трудно поддающиеся лечению болезнь Рейно и синдром Меньера, проявляющийся стойкими головокружениями, характеризуются застоем и спазмом капилляров. Вообще исследователи обнаружили нарушения работы капилляров при самом огромном количестве болезней, начиная от гриппа и дифтерии и .

Что же происходит с капиллярами? При определенных условиях мембраны клеток, из которых состоят капилляры, утолщаются, и тогда капилляры становятся непроницаемыми. В других случаях клетки сморщиваются и расстояние между ними увеличивается – капилляры, наоборот, становятся слишком проницаемыми. Это часто происходит при воспалительных заболеваниях и травмах. Календарь всегда будет нужным подарком, а если его украсить каллажом из фото с вами и вашими близкими, то это будет вдвойне приятно. Индивидуальный дизайн для вашего календаря сделают на сайте http://copy.spb.ru/poligr_prod/kalendari/ и вы станете обладателем уникального сувенира. Кроме того, в Копицентре есть возможность воспользоваться доставкой по СПб, поэтому вам не обязательно ехать за готовым заказом. Вот тогда и появляются отеки. Клетки также могут набухать либо разрушаться.

Изменения клеток и мембран капилляров, по последним сведениям, лежат в основе таких болезней, как:

  • слоновость;
  • флебит;
  • артериит;
  • перикардит;
  • эндокардит;
  • инфаркт;
  • легочные болезни;
  • нефрит;
  • пиелонефрит;
  • нефроз;
  • болезни ЖКТ;
  • глаукома;
  • катаракта;
  • экзема

Ряд исследователей утверждает, что в основе всех болезней в той или иной степени лежит нарушение работы капилляров. Чтобы успешно вылечить болезнь, надо в первую очередь восстановить проницаемость капилляров и их здоровое состояние.

Вывод

Дыхание всех клеток нашего тела, их питание и жизнь зависят от состояния капиллярной системы. Но современная медицина почти забыла об этой важной роли капиллярной системы, увлекшись медикаментозным воздействием, которое больше напоминает залатывание дыр и последствий нарушений, а не комплексное лечение их причин. Теперь приходит время вспомнить старые учебники физиологии и переоценить роль и значение капиллярной системы.

Когда орган тела находится в состоянии покоя, то множество его капилляров сужены и почти не работают. Как только наступает состояние активности, то капилляры расширяются и начинают усиленно снабжать кровью орган. Иногда кровоснабжение увеличивается в 700 раз!

В капиллярной системе находится 80 % всего объема крови.

В состоянии покоя только четверть всех капилляров работает. При активности начинает работать вся капиллярная система.

Как вернуть здоровье капиллярам

Доктор Залманов искренне считал, что в основе старения лежит старение капиллярной сети, вернее, постепенное ее угасание и выход из строя все больших и больших ее участков. Выключение капилляров и их закрытие постепенно приводят к тому, что , организм перестает обновляться так, как в юности, и дряхлеет. Болезни, развивающиеся из-за нарушения работы капилляров, довершают дело.

Что же делать, чтобы разомкнуть порочный круг и не допустить развития инфаркта, инсульта и прочих неприятных болезней старости? Вернуть молодость капиллярной сети! Многие исследователи, включая Залманова, разработали метод омоложения капилляров.

1. Специальные упражнения

Для тренировки и раскрытия капилляров разработаны простые, но действенные упражнения. Самое легкое из них – вибрация. Это упражнение заключается в том, что в положении лежа поднимаются вверх руки и ноги и ими совершаются колебательные вибрирующие движения. Ежедневное выполнение этого упражнения утром активизирует работу капиллярной системы и омолаживает организм, ускоряет обменные процессы.

Хорошо укрепляет капилляры и оздоравливает их любая физическая активность.

2. Массаж

Особенно приветствуется массаж с использованием иппликатора Кузнецова.

3. Контрастный душ

Обливание попеременно горячей и холодной водой оказывает волшебный эффект на капиллярную систему. Если при этом использовать специальную насадку на душ Алексеева, то эффект будет еще большим.

Русская баня с веничным массажем и контрастными обливаниями считается одним из самых лучших способов оздоровления сосудов.

4. Скипидарные ванны

Доктор Залманов предложил еще один способ раскрытия замерших капилляров – скипидарные ванны. Они позволяют расширить капилляры, открывают давно закрывшиеся сосуды, восстанавливают капиллярную сеть и способствуют общему оздоровлению организма.

Сегодня разработаны два вида скипидарных эмульсий – желтая и белая. Желтая эмульсия применяется для оздоровления людей, имеющих повышенное давление, белая – пониженное. Для комплексного воздействия советуют смешивать эмульсии в равных пропорциях.

Опять-таки польза от ванн будет только в том случае, если они делаются курсом, регулярно.

В здоровом теле капилляры работают как часы. Но если капиллярная сеть перестала справляться с работой и появились первые признаки хронического голодания тканей, пора позаботиться о самых молчаливых тружениках – капиллярах. Удивительно, от скольких болезней и недомоганий можно избавиться, если начать выполнять несложные и необременительные упражнения по тренировке капилляров каждый день!

КАПИЛЛЯРЫ (лат. capillaris волосной) - самые тонкостенные сосуды микроциркуляторного русла, по к-рым движется кровь и лимфа. Различают кровеносные и лимфатические капилляры (рис. 1).

Онтогенез

Клеточные элементы стенки капилляров и клетки крови имеют единый источник развития и возникают в эмбриогенезе из мезенхимы. Однако общие закономерности развития кровеносных и лимф. К. в эмбриогенезе изучены еще недостаточно. На протяжении онтогенеза кровеносные К. постоянно меняются, что выражается в запустевании и облитерации одних К. и новообразовании других. Возникновение новых кровеносных К. происходит путем выпячивания («почкования») стенки ранее образовавшихся К. Этот процесс происходит при усилении функции того или иного органа, а также при реваскуляризации органов. Процесс выпячивания сопровождается делением эндотелиальных клеток и увеличением размеров «почки роста». При слиянии растущего К. со стенкой предсуществующего сосуда происходит перфорация эндотелиальной клетки, расположенной на верхушке «почки роста», и соединение просветов обоих сосудов. Эндотелий капилляров, образующихся путем почкования, не имеет межэндотелиальных контактов и называется «бесшовным». К старости строение кровеносных К. существенно меняется, что проявляется уменьшением числа и размеров капиллярных петель, увеличением расстояния между ними, появлением резко извитых К., в которых сужения просвета чередуются с выраженными расширениями (Старческий варикоз, по Д. А. Жданову), а также значительным утолщением базальных мембран, дистрофией эндотелиальных клеток и уплотнением соединительной ткани, окружающей К. Эта перестройка вызывает снижение функций газообмена и питания тканей.

Кровеносные капилляры имеются во всех органах и тканях, они являются продолжением артериол, прекапиллярных артериол (прекапилляров) или, чаще, боковыми ветвями последних. Отдельные К., объединяясь между собой, переходят в посткапиллярные венулы (посткапилляры). Последние, сливаясь друг с другом, дают начало собирательным венулам, выносящим кровь в более крупные венулы. Исключением из этого правила у человека и млекопитающих являются синусоидные (с широким просветом) К. печени, расположенные между приносящими и выносящими венозными микрососудами, и клубочковые К. почечных телец, расположенные по ходу приносящих и выносящих артериол.

Кровеносные К. впервые обнаружил в легких лягушки М. Мальпиги в 1661 г.; спустя 100 лет Спалланцани (L. Spallanzani) нашел К. и у теплокровных животных. Открытие капиллярных путей транспорта крови завершило создание научно обоснованных представлений о замкнутой системе кровообращения, заложенных У. Гарвеем. В России начало систематическому изучению К. положили исследования Н. А. Хржонщевского (1866), А. Е. Голубева (1868), А. И. Иванова (1868), М. Д. Лавдовспого (1870). Существенный вклад в изучение анатомии и физиологии К. внес дат. физиолог А. Крог (1927). Однако наибольшие успехи в изучении структурно-функциональной организации К. были достигнуты во второй половине 20 в., чему способствовали многочисленные исследования, выполненные в СССР Д. А. Ждановым с сотр. в 1940-1970 гг., В. В. Куприяновым с сотр. в 1958-1977 гг., А. М. Чернухом с сотр. в 1966-1977 гг., Г. И. Мчедлишвили с сотр. в 1958- 1977 гг. и др., а за рубежом - Лен-дисом (E. М. Landis) в 1926-1977 гг., Цвейфахом (В. Zweifach) в 1936-1977 гг., Ренкином (E. М. Renkin) в 1952- 1977 гг., Паладе (G.E. Palade) в 1953- 1977 гг., Касли-Смитом (Т. R. Casley-Smith) в 1961-1977 гг., Видерхильмом (С. A. Wiederhielm) в 1966-1977 гг. и др.

Кровеносным К. принадлежит существенная роль в системе кровообращения; они обеспечивают транскапиллярный обмен - проникновение растворенных в крови веществ из сосудов в ткани и обратно. Неразрывная связь гемодинамической и обменной (метаболической) функций кровеносных К. находит выражение в их строении. По данным микроскопической анатомии, К. имеют вид узких трубок, стенки которых пронизаны субмикроскопическими «порами». Капиллярные трубки бывают относительно прямыми, изогнутыми или закрученными в клубочек. Средняя длина капиллярной трубки от прекапиллярной артериолы до посткапиллярной венулы достигает 750 мкм, а площадь поперечного сечения- 30 мкм 2 . Калибр К. в среднем соответствует диаметру эритроцита, однако в разных органах внутренний диаметр К. колеблется от 3-5 до 30-40 мкм.

Как показали электронно-микроскопические наблюдения, стенка кровеносного К., часто называемая капиллярной мембраной, состоит из двух оболочек: внутренней - эндотелиальной и наружной - базальной. Схематическое изображение строения стенки кровеносного К. представлено на рисунке 2, более детальное - на рисунках 3 и 4.

Эндотелиальная оболочка образована уплощенными клетками - эндотелиоцитами (см. Эндотелий). Число эндотелиоцитов, ограничивающих просвет К., обычно не превышает 2-4. Ширина эндотелиоцита колеблется от 8 до 19 мкм и длина - от 10 до 22 мкм. В каждом эндотелиоците выделяют три зоны: периферическую, зону органелл, ядросодержащую зону. Толщина этих зон и их роль в обменных процессах различны. Половину объема эндотелиоцита занимают ядро и органеллы - пластинчатый комплекс (комплекс Гольджи), митохондрии, зернистая и незернистая сеть, свободные рибосомы и полисомы. Органеллы сконцентрированы вокруг ядра, вместе с к-рым составляют трофический центр клетки. Периферическая зона эндотелиоцитов выполняет в основном обменные функции. В цитоплазме этой зоны располагаются многочисленные микропиноцитозные везикулы и фенестры (рис. 3 и 4). Последние представляют собой субмикроскопические (50-65 нм) отверстия, которые пронизывают цитоплазму эндотелиоцитов и бывают перекрыты истонченной диафрагмой (рис. 4, в, г), являющейся дериватом клеточной мембраны. Микропиноцитозные везикулы и фенестры, участвующие в трансэндотелиальном переносе макромолекул из крови в ткани и обратно, в физиологии называют крупными «норами». Каждый эндотелиоцит покрыт снаружи тончайшим слоем продуцируемых им гликопротеидов (рис. 4, а), последние играют немаловажную роль в поддержании постоянства микросреды, окружающей клетки эндотелия, и в адсорбции веществ, транспортируемых через них. В эндотелиальной оболочке соседние клетки объединяются с помощью межклеточных контактов (рис. 4, б), состоящих из цитолемм смежных эндотелиоцитов и межмембранных промежутков, заполненных гликопротеидами. Эти промежутки в физиологии чаще всего отождествляют с мелкими «порами», через которые проникают вода, ионы и белки с низким молекулярным весом. Пропускная способность межэндотелиальных промежутков различна, что объясняется особенностями их строения. Так, в зависимости от толщины интерцеллюлярной щели различают межэндотелиальные контакты плотного, щелевого и прерывистого типов. В плотных контактах интерцеллюлярная щель на значительном протяжении полностью облитерирована благодаря слиянию цитолемм смежных эндотелиоцитов. В щелевых контактах величина наименьшего расстояния между мембранами соседних клеток колеблется между 4 и 6 нм. В прерывистых контактах толщина межмембранных промежутков достигает 200 нм и более. Межклеточные контакты последнего типа в физиол, литературе также отождествляют с крупными «порами».

Базальная оболочка стенки кровеносного К. состоит из клеточных и неклеточных элементов. Неклеточный элемент представлен базальной мембраной (см.), окружающей эндотелиальную оболочку. Большинство исследователей рассматривает базальную мембрану как своеобразный фильтр толщиной 30-50 нм с размерами пор, равными - 5 нм, в к-ром сопротивление проникновению частиц возрастает с увеличением диаметра последних. В толще базальной мембраны расположены клетки - перициты; их называют адвентициальными клетками, клетками Руже, или интрамуральными перицитами. Перициты имеют вытянутую форму и изогнуты в соответствии с внешним контуром эндотелиальной оболочки; они состоят из тела и многочисленных отростков, которые оплетают эндотелиальную оболочку К. и, проникая через базальную мембрану, вступают в контакты с эндотелиоцитами. Роль этих контактов, так же как и функции перицитов, достоверно не выяснена. Высказано предположение об участии перицитов в регуляции роста эндотелиальных клеток К.

Морфологические и функциональные особенности кровеносных капилляров

Кровеносные К. разных органов и тканей обладают типовыми особенностями строения, что связано со спецификой функции органов и тканей. Принято различать три типа К.: соматический, висцеральный и синусоидный. Стенка кровеносных капилляров соматического типа характеризуется непрерывностью эндотелиальном и базальной оболочек. Как правило, она малопроницаема для крупных молекул белка, но легко пропускает воду с растворенными в ней кристаллоидами. К. такой структуры обнаружены в коже, скелетной и гладкой мускулатуре, в сердце и коре полушарий большого мозга, что соответствует характеру обменных процессов в этих органах и тканях. В стенке К. висцерального типа имеются окошки - фенестры. К. висцерального типа характерны для тех органов, которые секретируют и всасывают большие количества воды и растворенных в ней веществ (пищеварительные железы, кишечник, почки) или же участвуют в быстром транспорте макромолекул (эндокринные железы). К. синусоидного типа обладают большим просветом (до 40 мкм), что сочетается с прерывистостью их эндотелиальной оболочки (рис. 4, д) и частичным отсутствием базальной мембраны. К. этого типа обнаружены в костном мозге, печени и селезенке. Показано, что через их стенки легко проникают не только макромолекулы (напр., в печени, к-рая продуцирует основную массу белков плазмы крови), но и клетки крови. Последнее характерно для органов, участвующих в процессе кроветворения.

Стенка К. имеет не только общую природу и тесную морфол, связь с окружающей соединительной тканью, но связана с ней и функционально. Поступающая из кровеносного русла через стенку К. в окружающую ткань жидкость с растворенными в ней веществами и кислород переносятся рыхлой соединительной тканью ко всем остальным тканевым структурам. Следовательно, перикапиллярная соединительная ткань как бы дополняет собой микроциркуляторное русло. Состав и физ.-хим. свойства этой ткани в значительной мере определяют условия транспорта жидкости в тканях.

Сеть К. является значительной рефлексогенной зоной, посылающей к нервным центрам различные импульсы. По ходу К. и окружающей их соединительной ткани находятся чувствительные нервные окончания. По-видимому, среди последних значительное место занимают хеморецепторы, сигнализирующие о состоянии обменных процессов. Эффекторные нервные окончания у К. в большинстве органов не обнаружены.

Сеть К., образованная трубками малого калибра, где суммарные показатели поперечного сечения и площади поверхности значительно превалируют над длиной и объемом, создает наиболее благоприятные возможности для адекватного сочетания функций гемодинамики и транскапиллярного обмена. Характер транскапиллярного обмена (см. Капиллярное кровообращение) зависит не только от типовых особенностей строения стенок К.; не меньшее значение в этом процессе принадлежит связям между отдельными К. Наличие связей свидетельствует об интеграции К., а следовательно, и о возможности различного сочетания их функц, активности. Основной принцип интеграции К.- объединение их в определенные совокупности, составляющие единую функциональную сеть. Внутри сети положение отдельных К. неодинаково по отношению к источникам доставки крови и ее оттока (т. е. к прекапиллярным артериолам и посткапиллярным венулам). Эта неоднозначность выражается в том, что в одной совокупности К. связаны между собой последовательно, благодаря чему устанавливаются прямые коммуникации между приносящими и выносящими микро-сосудами, а в другой совокупности К. располагаются параллельно по отношению к К. указанной выше сети. Такие топографические различия К. обусловливают неоднородность распределения потоков крови в сети.

Лимфатические капилляры

Лимфатические капилляры (рис. 5 и 6) представляют собой систему замкнутых с одного конца эндотелиальных трубок, которые выполняют дренажную функцию - участвуют во всасывании из тканей фильтрата плазмы и крови (жидкости с растворенными в ней коллоидами и кристаллоидами), некоторых форменных элементов крови (лимфоцитов, эритроцитов), участвуют также в фагоцитозе (захват инородных частиц, бактерий). Лимф. К. отводят лимфу через систему интра- и экстраорганных лимф, сосудов в главные лимф, коллекторы - грудной проток и правый лимф. проток (см. Лимфатическая система). Лимф. К. пронизывают ткани всех органов, за исключением головного и спинного мозга, селезенки, хрящей, плаценты, а также хрусталика и склеры глазного яблока. Диаметр их просвета достигает 20-26 мкм, а стенка, в отличие от кровеносных К., представлена лишь резко уплощенными эндотелиоцитами (рис. 5). Последние примерно в 4 раза крупнее, чем эндотелиоциты кровеносных К. В клетках эндотелия, кроме обычных органелл и микропиноцитозных везикул, встречаются лизосомы и остаточные тельца - внутриклеточные структуры, возникающие в процессе фагоцитоза, что объясняется участием лимф. К. в фагоцитозе. Другая особенность лимф. К. заключается в наличии «якорных», или «стройных», филаментов (рис. 5 и 6), осуществляющих фиксацию их эндотелия к окружающим К. коллагеновым протофибриллам. В связи с участием в процессах всасывания межэндотелиальные контакты в их стенке имеют различное строение. В период интенсивной резорбции ширина межэндотелиальных щелей увеличивается до 1 мкм.

Методы исследования капилляров

При изучении состояния стенок К., формы капиллярных трубок и пространственных связей между ними широко используют инъекционные и безынъекционные методики, различные способы реконструкции К., трансмиссионную и растровую электронную микроскопию (см.) в сочетании с методами морфометрического анализа (см. Морфометрия медицинская) и математического моделирования; для прижизненного исследования К. в клинике применяют микроскопию (см. Капилляроскопия).

Библиография: Алексеев П. П. Болезни мелких артерий, капилляров и артериовенозных анастомозов, Л., 1975, библиогр.; Казначеев В. П. и Дзизинский А. А. Клиническая патология транскапиллярного обмена, М., 1975, библиогр.; Куприянов В. В., Караганов Я. JI. и Козлов В. И. Микроциркуляторное русло, М., 1975, библиогр.; Фолков Б. и Нил Э. Кровообращение, пер. с англ., М., 1976; Чернух А. М., Александров П. Н. иАлексеев О. В. Микроциркуляции, М., 1975, библиогр.; Шахламов В. А. Капилляры, М., 1971, библиогр.; Шошенко К. А. Кровеносные капилляры, Новосибирск, 1975, библиогр.; Hammersen F. Anato-mie der terminalen Strombahn, Miinchen, 1971; К г о g h A. Anatomie und Physio-logie der Capillaren, B. u. a., 1970, Bibliogr.; Microcirculation, ed. by G. Kaley a. B. M. Altura, Baltimore a. o., 1977; Simionescu N., SimionescuM. a. P a I a d e G. E. Permeability of muscle capillaries to small heme peptides, J. cell. Biol., v. 64, p. 586, 1975; Z w e i-fach B. W. Microcirculation, Ann. Rev. Physiol., v. 35, p. 117, 1973, bibliogr.

Я. Л. Караганов.

И артерии , капилляры принимают участие в между тканями и кровью. Так как стенки капилляров состоят из однослойного эндотелия , толщина которого очень мала, через них могут проходить липиды, вода, молекулы кислорода и некоторые другие вещества. Кроме того, через стенки капилляров также могут проходить продукты жизнедеятельности организма (такие как мочевина и диоксид углерода), которые вещества транспортируются для выведения через организм. Специальные молекулы влияют на проницаемость стенки капилляра.

Также среди важных функций эндотелия можно выделить перенос веществ-мессенджеров, питательных веществ и других соединений. Иногда молекулы бывают слишком больших размеров, чтобы проникнуть через стенку при помощи диффузии, тогда для их переноса используются другие механизмы – экзоцитоза и эндоцитоза. Стенки капилляров обладают высокой приницаемостью для всех низкомолекулярных веществ, растворенных в .

За счет капиллярной сети обеспечивается такой важный процесс как кровообращение органов . От метаболической активности молекул зависит потребность в капиллярах для обеспечения питательными веществами. В нормальных условиях капиллярная сеть обеспечена лишь четвертью того объема крови, который она может вместить в себя. Но механизмы саморегуляции, которые работают при расслаблении гладкомышечных клеток, могут увеличить этот объем еще больше. Но следует отметить, что любое увеличение просвета капилляра является пассивным, так как стенка не содержит мышечных клеток. Сигнальные вещества, которые синтезируются эндотелием, оказывают воздействие на мышечные клетки крупных сосудов, расположенных в непосредственной близости.

Существует несколько разновидностей капилляров:

  • Непрерывные капилляры
  • Фенестрированные капилляры
  • Синусоидные капилляры

Для непрерывных капилляров свойственны очень плотные межклеточные соединения, которые позволяют диффундировать лишь малым ионам и молекулам.

Фенестрированные капилляры находятся в эндокринных железах, кишечнике и других внутренних органах, в которых имеет место активный транспорт веществ между окружающими тканями и кровью. Стенки таких капилляров обладают просветами, позволяющими проникать крупным молекулам.

Синусоидные капилляры можно встретить в кроветворных и эндокринных органах, таких как селезенка и , в лимфоидной ткани, печени. Такие капилляры, расположенные в печеночных дольках, имеют в своем составе клетки Купфера, которые могут уничтожать и захватывать инородные тела. Синусоидные капилляры характерны тем, что они содержат щели (синусы), размер которых достаточен для проникновения вне просвета капилляра крупных молекул белка и .

Интересные факты

  • Общей длины капилляров взрослого человека достаточно, чтобы два раза обернуть Землю.
  • Общая площадь поперечных сечений данных тонких сосудов составляет около пятидесяти квадратных метров, что в 25 раз превышает поверхность тела.
  • В теле взрослого человека насчитывается около 100-160 миллиардов капилляров.

Программа
«Здоровые капилляры» http://www.64z.ru/capillaries/
Здоровье после сорока, а по большому счету и продолжительность жизни, определяется здоровьем капилляров.
Что такое капилляры

Капилляры (от лат. capillaris – волосяной) являются самыми тонкими сосудами в организме человека, они пронизывают собой все ткани, образуя широкую сеть взаимосвязанных сосудов, тесно контактирующих с клеточными структурами; они снабжают клетки необходимыми веществами и уносят продукты их жизнедеятельности. Артериальная часть капилляров выжимает воду плазмы крови через свои стенки. Венозная часть поглощает воду из внеклеточных жидкостей. В этом суть циркуляции органических жидкостей в теле.

Из анатомии известно, что стенки капилляров состоят из отдельных тесно соприкасающихся и очень тонких эндотелиальных клеток. Толщина этого слоя настолько мала, что позволяет проходить через него молекулам кислорода, воды, липидов и многим другим. Продукты, образующиеся в результате жизнедеятельности организма (такие как диоксид углерода и мочевина), также могут проходить через стенку капилляра для транспортировки их к месту выведения из организма.
:
Эндотелиальные клетки капилляров избирательно задерживают одни химические вещества и пропускают другие. Находясь в здоровом состоянии, они пропускают через себя только воду, соли и газы. Если проницаемость капиллярных клеток нарушена, то к клеткам тканей поступают и другие вещества, в результате чего клетки погибают от метаболической перегрузки. Капилляропатия – это нарушение проницаемости стенок капилляров.
Свойства капилляров

Капилляр – нанотрубка, по форме приближающаяся к цилиндру диаметром от 2 до 30 мкм, образованная одним слоем эндотелиальных клеток. Средний диаметр капилляра составляет 5-10 мкм (диаметр эритроцита – примерно 7,5 мкм). Длина одиночного капилляра составляет в среднем от 0,5 до 1 мм. Толщина стенки колеблется от 1 до 3 мкм. Капилляры сформированы клетками эндотелия, соединенными между собой «межклеточным цементом» и формирующими трубку. Поры капиллярной стенки имеют диаметр около 3 нм, достаточный для того, чтобы обеспечить диффузию нерастворимых в жирах молекул, имеющих размеры, колеблющиеся от размеров молекулы хлорида натрия до размеров молекулы гемоглобина. Жирорастворимые молекулы диффундируют через толщу клеток эндотелия капилляров. Диффузия кислорода и углекислого газа осуществляется через любые участки капиллярной стенки.

Каждый капилляр имеет имеет артериальный отдел, расширенный переходный отдел и венозный отдел.

На двух концах капилляра есть сужения – аналоги клапанов сердца. В месте отхождения капилляра от прекапиллярной артериолы располагается прекапиллярный сфинктер, который участвует в регулировании тока крови через капилляр.

Стенки капилляров не содержат мышечного слоя и потому физически неспособны к сокращению. Но они сокращаются, реагируя на пульсацию энергии сердца и подстраиваясь под его ритм. Поэтому капилляры способны ритмично сокращаться и проталкивать кровь. Именно систолы, т.к. сокращения капилляров являются сутью кровообращения.

Капилляры – это хранилище энергии в организме. Энергоемкость физического тела определяется состоянием капилляров.
Капилляры
Капилляры и сердце

Исходя из вышеизложенного, капилляры можно назвать периферическими сердцами, ассоциируя их с физическим сердцем. Другое дело, что традиционно воспринимаемая роль сердца, как кровяного насоса, не соответствует действительной. Задача сердца – распознавать и дифференцировать ток крови в зависимости от ее качества. Цель сердца – направить каждому органу, каждой системе ту порцию крови, в количестве и качестве которой они нуждаются. Сердце разделяет общий поток проходящей через него крови на отдельные вихри, принципиально различные по своему содержанию. Вторая цель сердца – задание ритма жизнедеятельности всего организма. В первую очередь задание ритма работы капиллярной сети. Исследование сердца – тема другой работы. Здесь нам надо проследить связь сердца, сосудов и капилляров.

Сердце получает перегрузку, когда капилляры не успевают изменить ритм своей деятельности в соответствии с новым ритмом, который задает сердце. Например, при быстром переход из пассивного состояния физического тела в режим его активной деятельности. Или при резкой остановке после серьезной физической нагрузки. Плавная смена степени активации физического тела позволяет лучше синхронизировать работу сердечно-сосудистой и кровеносной систем.
Задача сердца – задать ритм всем физиологическим процессам в теле, т.е. скорость и согласованность протекания их. В аспекте данной темы, сердце задает ритм и силу сокращения капилляров и этим определяет количество капилляров, активно функционирующих в данный момент. Нарушения ритма сердца во многом связаны с нарушениями капиллярного кровообращения.

Многие болезни сердечно-сосудистой системы, в т.ч. связанные с нарушением ритма сердца, лечатся восстановлением капиллярного кровообращения. Т.е. восстановление пропускной и фильтрующей способностей капилляров, а также восстановление их способности к ритмической пульсации, автоматически восстанавливают дееспособность сердца и нормализуют его ритм. Именно поэтому скипидарные ванны Залманова столь эффективны при многих нарушениях сердечно-сосудистой системы, хотя невежественные специалисты называют эти нарушения противопоказаниями к скипидарным ваннам Залманова.
Обмен всех веществ в организме зависит движения крови в капиллярной сети. Именно через капилляры происходят важнейшие процессы питания и очищения клеток. Задача сердца – направлять кровь соответствующего качества и в нужном количестве во все органы и система. Задача сосудов – подвести кровь от сердца к капиллярам. Задача капилляров – обеспечить обмен веществ в каждой клетке.

Функционирование сердца и сосудов во многом определяется состоянием капиллярной сети, пронизывающей их, т.е. капилляров сосудов и капилляров сердца.
Нарушение капиллярного кровообращения лежит в основе болезней физического тела. Оно ведет к рассогласованию взаимодействий части организма и всего организма. Если мы определимся, что жизнь есть часть, единая с целым, то вскроем важнейшую зависимость жизни, как таковой, от состояния капиллярного кровообращения.

Любая болезнь связана с замедлением или остановкой кровообращения в каком-либо месте организма. Любая болезнь также связана с замедлением движения межклеточных жидкостей.
При помощи капилляроскопии установлено, что в возрасте 40-45 лет начинается уменьшение числа открытых капилляров. Сокращение их числа постоянно прогрессирует и приводит к высушиванию клеток и тканей. Прогрессирующее высушивание организма составляет анатомо-физиологическую основу его старения. Если не противостоять этому специальными действиями, то наступает пора артериосклероза, гипертонической болезни, стенокардии, невритов, заболеваний суставов и множества других болезней.
Застой крови в капиллярах и сосудах открывает возможность вторжения различных микробов. Чистая кровь, активно движущаяся кровь естественным путем способствует дезинфекции организма.
Резкое сужение капилляров ушного лабиринта – органа равновесия – приводит к головокружениям, тошноте, рвоте, слабости, бледности. Спазм капилляров головного мозга вызывает его ишемию и головокружение. У людей, больных глаукомой, можно видеть различные болезненные изменения кожных капилляров. При крапивнице наблюдается резкое болезненное расширение капилляров кожи. В начале развития геморрагического нефрита имеет место массовое сужение капилляров. Болезнь беременных – эклампсия – развивается в результате застоя крови в капиллярах матки, брюшины и кожи.
При всех суставных болезнях наблюдается застой крови в капиллярной сети. Без такого застоя не существует ни артрита, ни артроза, ни деформации суставов, сухожилий, костей; не существует мышечной атрофии.
Застой в капиллярах обнаруживается после мозговых инсультов, при стенокардии, склеродермии, лимфостазе, детском церебральном параличе.
При развитии язвы желудка или двенадцатиперстной кишки спазмы капилляров также играют первостепенную роль. Капилляры снабжают кровью слизистые и под слизистые оболочки, и их спазмы приводят к недостатку кислорода в клетках и образованию множества микро некрозов в слизистых и под слизистых оболочках. Если очаги микронекрозов рассеяны, то ставится диагноз гастрит – воспаление слизистой оболочки желудка. Если очаги микронекрозов сливаются, то образуется язва желудка или двенадцатиперстной кишки.
Очевидные признаки, по которым можно определить состояние капилляров

Сделайте тест, показывающий функциональное состояние ваших капилляров: с усилием проведите ногтем по телу. Как след, останется белая полоска, которая через несколько секунд должна порозоветь. Белый цвет кожи – под внешним давлением кровь ушла из капилляров; красный цвет кожи – капилляры наполнились кровью с избытком. Чем меньше период времени, за который цвет кожи меняется, тем лучше работают капилляры. В данном случае, эффект должен наблюдаться за считанные секунды.

Более серьезный тест дееспособности капилляров состоит в реакции организма на холод. Чем холоднее окружающая среда, тем сильнее должно разогреваться тело. Речь идет не о длительно длящемся охлаждении, а о резкой смене температуры. Например, кратковременное погружение в холодную воду должно вызывать жар, а не озноб. Контрастный душ – отличное средство для тренировки всей сосудистой системы.

Если бытовые травмы ведут к образованию гематом – синяков – это верный показатель хрупкости капилляров. На хрупкость капилляров указывает и кровоизлияние в глаз. Хрупкость капилляров может вести привести к внутренним кровоизлияниям с последующим перерождением тканей в любой части тела, в любом органе. Инфаркт и инсульт – частые итоги разрывов слабых и неэластичных капилляров.

Ненормальный цвет кожи, онемение, потение конечностей, ощущение в них холода, неприятные ощущения в виде покалывания, жжения, ползания мурашек, разные кожные высыпания и пятна, а также склероз и атрофия мягких тканей – это проявления плохой циркуляции крови в пре капиллярных артериолах, пост капиллярных венулах и в самих капиллярах.
Необходимые условия восстановления капилляров

Потребление достаточного количества чистой воды.

Густая и грязная кровь – самая частая причина капилляропатии. Элементарное действие – ежедневное потребление качественной воды в достаточном количестве – для большинства людей в настоящее время не доступно ни по объективным, ни по субъективным причинам. В условиях хронического обезвоживания вести речь о восстановлении капилляров смысла нет. Поэтому столько редко можно встретить человека, у которого капилляры здоровы.
О правилах потребления воды см. оздоровительную программу «Восстановление здоровья с помощью воды»

Физиологически правильное пространственное положение тела.

Положение тела в пространстве всегда накладывает специфический отпечаток на работу его систем и органов, стимулируя кровоснабжение одних и угнетая кровоснабжение других. Речь идет прежде всего о правильной осанке, когда мы идем, стоим или сидим.

Корректор осанки жилет-тренажер «Добрыня» тренирует, обучает мышцы, нарабатывает правильную мышечную память, задавая идеальное положение позвоночника.

Ортопедическая подушка Асония позволяет во время отдыха и сна, во-первых, принять физиологически правильное положение шейному отделу позвоночника, во-вторых, предотвращает нарушение капиллярного кровообращения той части головы, которая касается подушки. Именно недействующие под давлением массы тела во время сна капилляры кожи лица являются одной из главных причин возникновения морщин и увядания кожи. Асония создает эффект псевдоневесомости, и капилляры во время сна действуют нормально.

Утренняя зарядка, вечерний кросс, бассейн, тренажерный зал или энергичная прогулка вместо транспорта – выбирайте на свой вкус. В данном случае важен сам факт физической нагрузки как таковой. Ее вид, интенсивность и продолжительность – дело второе.

Отсутствие необходимых условий способствует деградации кровеносной системы.
Способы восстановления капилляров

Скипидарные ванны Залманова – лучшая и самая доступная из известных практик восстановления капилляров и снижения биологического возраста. Лучший из известных скипидаров для ванн Залманова – Скипофит. Обратите на Скипофит особое внимание. Это действительно самое эффективное средство для тренировки капилляров и общего омоложения тела. Скипидарные ванны пробуждают капиллярное кровообращение во всем теле сразу. Ни одним локально применяемым средством вы не добьетесь такого оздоровительного результата.

Контрастные водные (воздушные) процедуры. Наиболее доступными вариантами являются контрастный душ и баня. Информация о том, как правильно принимать контрастный душ.

Полимедэл налаживает работу капилляров в области до 10 см вглубь тела.

Прополис Гелиант фундаментально прочищает капилляры кожи. И Полимедэл, и Прополис Гелиант не только стимулируют существующие капилляры, но возрождают капиллярную сеть, заставляя прорастать новые капилляры в те области соединительной ткани, где их не было, например, в шрамах.

Все перевернутые положения тела, т.е. такие положения, в которых таз выше головы. Лучшее физическое упражнение для восстановления капиллярного кровообращения, для тренировки сосудов – стойка на голове. Оздоравливающая мощь стойки на голове, как способа профилактики многих сердечно-сосудистых патологий – инфаркта, инсульта, расширения вен, атрофирование капиллярной сети и т.д., очень велика. Поэтому подходить к выполнению этого упражнения надо предельно осторожно, начиная с более простых перевернутых поз.

Физические упражнения.
В сосудистых стенках в месте ответвления капилляров от артериол расположены четко выраженные кольца из мышечных клеток, которые играют роль сфинктеров, регулирующих поступление крови в капиллярную сеть. В нормальных условиях открыта лишь небольшая часть этих т. н. прекапиллярных сфинктеров, так что кровь течет по немногим из имеющихся каналов.
Чем больше метаболическая активность клеток, тем больше функционирующих капилляров требуется для обеспечения их жизнедеятельности. Дело в том, что в состоянии покоя у человека капилляры функционируют лишь на четверть. Остальные три четверти – это резервные возможности, которые включаются в работу в ответ на физическую нагрузку. На 100% капилляры задействуется в моменты высшего напряжения мышц и органов.
Необходимо чтобы капилляры, незадействованные в спокойном состоянии тела, периодически включались в работу. Эти поддерживаются резервные функциональные и энергетические ресурсы организма.

Суперфуд – Живое какао.
Доказано, что вещества содержащиеся в живом какао оказывают укрепляющее действие на капилляры. Живое какао являются профилактикой развития атеросклероза, понижает риск сердечно-сосудистых заболеваний.
Живое какао стимулирует приток крови к мозгу, в частности к тем областям мозга, которые отвечают за быстроту реакции и память. Проведенные эксперименты позволяют утверждать, живое какао возвращает эластичность кровеносным сосудам так, что те становятся моложе на 10-15 лет, а эластичность сосудов – гарантия от ранней гипертонии, инфарктов-инсультов. Исследователями установлено, что риск развития инсульта снижается в 8 раз, сердечной недостаточности в 9 раз, рака в 15 раз и диабета в 6 раз при ежедневном употреблении живого какао.

Биологически активные добавки к пище.
Лучшие из известных биологически активных добавок к пище, нормализующие капиллярное кровообращение:

Бальзам Полифит-М – микроэмульсия ферментированных масел и соков свежих растений. Особенно хорошо Полифит-М работает с сосудами и капиллярами головного мозга.

Оводорин – экстракт мицелия медицинской разновидности вешенки.

Олексин – мощнейшее натуральное средство из листьев персикового дерева.