Сердечная недостаточность (сн). Компенсаторные механизмы сердечной недостаточности. Сердечные гликозиды — дигоксин. Компенсаторные механизмы при сердечной недостаточности

Происходит активация нескольких нейроэндокринных систем, важнейшими из которых являются:

симпатико-адреналовая система (САС) и ее эффекторы (адреналин и норадреналин);

ренин-ангиотензин-альдостероновая система (РААС) (почки - надпочечники);

тканевые ренин-ангиотензиновые системы (РАС);

предсердный натрийуретический пептид;

эндотелиальная дисфункция и др.

увеличение ЧСС (стимуляция b1-адренергических рецепторов) и, соответственно, МО (поскольку МО = УО х ЧСС);

повышение сократимости миокарда (стимуляция b1- и a1-рецепторов);

системная вазоконстрикция и повышение ОПСС и АД (стимуляция a1-рецепторов);

повышение тонуса вен (стимуляция a1-рецепторов), что сопровождается увеличением венозного возврата крови к сердцу и увеличением преднагрузки;

стимуляция развития компенсаторной гипертрофии миокарда;

активирование РААС (почечно-надпочечниковой) в результате стимуляции b1-адренергических рецепторов юкстагломерулярных клеток и тканевых РАС за счет дисфункции эндотелия.

На начальных этапах повышение активности САС способствует увеличению сократимости миокарда, притока крови к сердцу, величины преднагрузки и давления наполнения желудочков, что в конечном итоге приводит к сохранению в течение определенного времени достаточного сердечного выброса. Однако длительная гиперактивация САС у больных хронической СН может иметь многочисленные негативные последствия, способствуя:

1. Значительному увеличению преднагрузки и постнагрузки (за счет чрезмерной вазоконстрикции, активации РААС и задержки натрия и воды в организме).

2. Повышению потребности миокарда в кислороде (в результате положительного инотропного эффекта активации САС).

3. Уменьшению плотности b-адренергических рецепторов на кардиомиоцитах, что со временем приводит к ослаблению инотропного эффекта катехоламинов (высокая концентрация катехоламинов в крови уже не сопровождается адекватным увеличением сократимости миокарда).

4. Прямому кардиотоксическому эффекту катехоламинов (некоронарогенные некрозы, дистрофические изменения миокарда).

5. Развитию фатальных желудочковых нарушений ритма (желудочковой тахикардии и фибрилляции желудочков) и т.д.

Гиперактивация симпатико-адреналовой системы

Один из наиболее ранних компенсаторных факторов при дисфункции сердца. Особенно важной оказывается в случаях развития острой СН. Эффекты реализуются прежде всего через a- и b-адренергические рецепторы клеточных мембран различных органов и тканей.

Гиперактивация ренин-ангиотензин-альдостероновой системы

Имеет значение не только почечно-надпочечниковая РААС, но и локальные тканевые.

Активация почечной ренин-ангиотензиновой системы сопровождается выделением клетками ЮГА почек ренина, расщепляющего ангиотензиноген с образованием пептида - ангиотензина I (АI). Последний под действием АПФ трансформируется в ангиотензин II, который является основным и наиболее мощным эффектором РААС. Воздействие АII на АТ2-рецепторы клубочковой зоны коркового вещества надпочечников приводит к образованию альдостерона, основным эффектом которого является задержка в организме натрия и воды, что способствует увеличению ОЦК.

В целом активация РААС сопровождается следующими эффектами:

выраженной вазоконстрикцией, повышением АД;

задержкой в организме натрия и воды и увеличением ОЦК;

повышением сократимости миокарда (положительное инотропное действие);

инициированием развития гипертрофии и ремоделирования сердца;

активацией образования соединительной ткани (коллагена) в миокарде;

повышением чувствительности миокарда к токсическому влиянию катехоламинов.

Активация РААС при острой СН и на начальных этапах развития хронической СН имеет компенсаторное значение и направлена на поддержание нормального уровня АД, ОЦК, перфузионного давления в почках, увеличение пред- и постнагрузки, увеличение сократимости миокарда. Однако в результате длительной гиперактивации РААС развивается ряд отрицательных эффектов:

1. увеличение ОПСС и снижение перфузии органов и тканей;

2. чрезмерное увеличение постнагрузки на сердце;

3. значительная задержка жидкости в организме, что способствует формированию отечного синдрома и повышению преднагрузки;

4. инициация процессов ремоделирования сердца и сосудов, в том числе гипертрофии миокарда и гиперплазии гладкомышечных клеток;

5. стимуляция синтеза коллагена и развитие фиброза сердечной мышцы;

6. развитие некроза кардиомиоцитов и прогрессирующее повреждение миокарда с формированием миогенной дилатации желудочков;

7. повышение чувствительности сердечной мышцы к катехоламинам, что сопровождается возрастанием риска возникновения фатальных желудочковых аритмий у больных СН.

Антидиуретический гормон (АДГ), секретируемый задней долей гипофиза, участвует в регуляции проницаемости для воды дистальных отделов канальцев почек и собирательных трубок. Например, при недостатке в организме воды и дегидратации тканей происходит уменьшение объема циркулирующей крови (ОЦК) и увеличение осмотического давления крови (ОДК). В результате раздражения осмо- и волюморецепторов усиливается секреция АДГ задней долей гипофиза. Под влиянием АДГ повышается проницаемость для воды дистальных отделов канальцев и собирательных трубок, и, соответственно, усиливается факультативная реабсорбция воды в этих отделах. В итоге выделяется мало мочи с высоким содержанием осмотически активных веществ и высокой удельной плотностью мочи.

Наоборот, при избытке воды в организме и гипергидратации тканей в результате увеличения ОЦК и уменьшения ОДК происходит раздражение осмо- и волюморецепторов, и секреция АДГ резко снижается или даже прекращается. В результате реабсорбция воды в дистальных отделах канальцев и собирательных трубках снижается, тогда как Na+ продолжает реабсорбироваться в этих отделах. Поэтому выделяется много мочи с низкой концентрацией осмотически активных веществ и низкой удельной плотностью.

Нарушение функционирования этого механизма при сердечной недостаточности может способствовать задержке воды в организме и формированию отечного синдрома. Чем меньше сердечный выброс, тем больше раздражение осмо- и волюморецепторов, что приводит к увеличению секреции АДГ и, соответственно, задержке жидкости.

Предсердный натрийуретический пептид

Предсердный натрийуретический пептид (ПНУП) является своеобразным антагонистом вазоконстрикторных систем организма (САС, РААС, АДГ и других). Он продуцируется миоцитами предсердий и выделяется в кровоток при их растяжении. ПНУП вызывает вазодилатирующий, натрийуретический и диуретический эффекты, угнетает секрецию ренина и альдостерона.

Секреция ПНУП - это один из наиболее ранних компенсаторных механизмов, препятствующих чрезмерной вазоконстрикции, задержке Nа+ и воды в организме, а также увеличению пред- и постнагрузки.

Активность ПНУП быстро усиливается по мере прогрессирования СН. Однако, несмотря на высокий уровень циркулирующего ПНУП, степень его положительных эффектов при хронической СН заметно снижается, что связано, вероятно, с уменьшением чувствительности рецепторов и увеличением расщепления пептида. Поэтому максимальный уровень циркулирующего ПНУП ассоциируется с неблагоприятным течением хронической СН.

Нарушения эндотелиальной функции

Дисфункция эндотелия, возникающая под действием различных повреждающих факторов (гипоксии, чрезмерной концентрации катехоламинов, ангиотензина II, серотонина, высокого уровня АД, ускорения кровотока и т.д.), характеризуется преобладанием вазоконстрикторных эндотелийзависимых влияний и закономерно сопровождается повышением тонуса сосудистой стенки, ускорением агрегации тромбоцитов и процессов пристеночного тромбообразования.

К числу важнейших эндотелийзависимых вазоконстрикторных субстанций, повышающих сосудистый тонус, агрегацию тромбоцитов и свертываемость крови, относятся эндотелин-1 (ЭТ1), тромбоксан А2, простагландин PGH2, ангиотензин II (АII) и др. Они оказывают существенное влияние на сосудистый тонус и сократимость миокарда, величину преднагрузки и постнагрузки, агрегацию тромбоцитов и т.д.. Кроме того, эндотелин-1 способствует образованию коллагена в сердечной мышце и развитию кардиофиброза. Существенную роль вазоконстрикторные субстанции играют в процессе пристеночного тромбообразования

Одним из ведущих патогенетических механизмов формирования и прогрессирования сердечной недостаточности является гиперактивация нейрогормональных систем организма - САС, РААС, АДГ, ПНУП и др., а также дисфункция эндотелия.

2. На начальных этапах развития заболевания активация этих систем носит адаптационный характер и направлена на сохранение достаточного сердечного выброса, системного АД и перфузии органов и тканей. Этот эффект реализуется благодаря:

увеличению ЧСС;

повышению сердечного выброса за счет гиперфункции с последующей гипертрофией;

увеличению постнагрузки (вазоконстрикция);

увеличению преднагрузки и ОЦК (физиологическая задержка натрия и воды) и др.

3. Длительная чрезмерная активация нейрогормональных систем приводит к:

избыточной задержке натрия и воды в организме (отечный синдром);

резкому увеличению ОПСС (нарушение перфузии органов и тканей);

чрезмерному возрастанию пред- и постнагрузки, что ведет к снижению функции сердца;

стимулированию синтеза коллагена и развитию кардиофиброза;

развитию некрозов кардиомиоцитов, прогрессирующему повреждению сердечной мышцы и формированию миогенной дилатации сердца.

Кровообращение (circulatio sanguinis) - непрерывное движение крови по замкнутой системе полостей сердца и кровеносных сосудов, обеспечивающее все жизненно важные функции организма.

Направленный ток крови обусловлен градиентом давления, который определяется активной (насосной) работой сердца , объемом (массой) циркулирующей крови, ее вязкостью, сопротивлением сосудов току крови и другими факторами. Величина градиента давления имеет пульсирующий характер, обусловливаемый периодическими сокращениями сердца и изменениями тонуса кровеносных сосудов.

По строению, биофизическим особенностям и функции кровеносные сосуды подразделяют на магистральные сосуды (аорта и крупные артерии), по которым осуществляется поступательный кровоток за счет потенциальной энергии растянутых в систолу стенок; сосуды сопротивления (мелкие артерии и артериолы), определяющие величину общего периферического сосудистого сопротивления; обменные сосуды (капилляры), обеспечивающие обмен веществ между кровью и тканями; шунтирующие сосуды (артериовенозные анастомозы), по которым осуществляется сброс крови из артерий в вены, минуя капилляры; емкостные сосуды (вены), обладающие большой растяжимостью и низкой эластичностью (содержат до 70-80% объема циркулирующей крови).

Условно выделяют большой и малый круг кровообращения. По большому кругу кровь из левого желудочка сердца поступает в аорту и отходящие от нее кровеносные сосуды, пронизывающие все ткани и органы тела, а затем в правое предсердие; по малому - из правого желудочка сердца в легкие, где обогащается кислородом и освобождается от избытка углекислого газа, затем попадает в левое предсердие. У взрослого человека приблизительно 84% всего объема крови содержится в большом круге кровообращения, около 10% - в малом и около 7% - в сердце. Объем (масса) циркулирующей крови (т.е. общий объем крови за вычетом объема крови, находящегося в кровяных депо) у взрослого человека составляет 4-6 л , что соответствует 6-8% веса (массы) тела. Кровяными депо называют органы, которые могут задерживать в своих сосудах значительное количество крови (как правило, в концентрированном виде). Основными органами, выполняющими такую функцию, являются печень, селезенка, субпапиллярное сосудистое сплетение кожи, почки, легкие, костный мозг. Мобилизация их функции как депо крови возникает в условиях повышения потребности организма в кислородной емкости крови (интенсивная мышечная работа, стресс-реакции и др.).

Кровообращение характеризуется следующими основными показателями.

Систолический (ударный) объем крови (СОК), выбрасываемой сердцем за одно сокращение. В покое он равен 60-70 мл , при физической нагрузке может возрастать в 3-5 раз. СОК левого и правого желудочков одинаков.

Минутный объем крови (МОК), выбрасываемой сердцем за 1 мин. В покое составляет 5,0-5,5 л , при физической работе увеличивается в 2-4 раза, у тренированных - в 6-7 раз. При заболеваниях, например при декомпенсированных пороках сердца или первичной гипертензии малого круга, МОК снижается до 2,5-1,5 л.

Объем (масса) циркулирующей крови (ОЦК) составляет 75-80 мл на 1 кг массы тела. При физических нагрузках, декомпенсированных пороках сердца ОЦК увеличивается (гиперволемия) из-за выхода крови из кровяных депо, достигая 140-190 мл/кг . При кровопотере, коллапсе, шоке, обезвоживании организма ОЦК уменьшается (гиповолемия).

Частота сердечных сокращений (ЧСС) в одну минуту (ударов в 1 мин ) колеблется от 60 до 80 ударов в 1 мин ; у тренированных людей - в пределах 40-60 ударов в 1 мин. Максимальная частота при тяжелой физической нагрузке может достигать 180-240 ударов в 1 мин . При различных видах патологии сердечно-сосудистой системы ЧСС меняется в сторону учащения или урежения (см. Пульс ).

Время кругооборота крови - это время, в течение которого единица объема крови проходит оба круга кровообращения . В норме оно составляет 20-25 с . Уменьшается при физической нагрузке и увеличивается при нарушениях кровообращения, например при декомпенсированных пороках сердца оно достигает 50-60 с .

Давление крови (кровяное давление) обеспечивает кровоток по системе кровеносных сосудов. Его величина зависит от многих факторов и существенно отличается в различных областях тела (см. Кровяное давление ).

Регуляция кровообращения обеспечивается взаимодействием местных гуморальных механизмов при активном участии нервной системы и направлена на оптимизацию соотношения кровотока в органах и тканях с уровнем функциональной активности организма.

В процессе обмена веществ в органах и тканях постоянно образуются метаболиты, влияющие на тонус кровеносных сосудов. Интенсивность образования метаболитов (СО 2 или Н + ; лактата, пирувата, АТФ, АДФ, АМФ и др.), определяемая функциональной активностью органов и тканей, является одновременно и регулятором их кровоснабжения. Этот тип саморегуляции называется метаболическим.

Местные саморегуляторные механизмы генетически обусловлены и заложены в структурах сердца и кровеносных сосудов. Их можно рассматривать и как местные миогенные ауторегуляторные реакции, суть которых состоит в сокращении мышц в ответ на их растяжение объемом или давлением.

Гуморальная регуляция кровообращения осуществляется с участием гормонов, ренин-ангиотензиновой системы, кининов, простагландинов, вазоактивных пептидов, регуляторных пептидов, отдельных метаболитов, электролитов и других биологически активных веществ. Характер и степень их влияния определяются дозой действующего вещества, реактивными свойствами организма, его отдельных органов и тканей, состоянием нервной системы и другими факторами. Так, разнонаправленное действие катехоламинов крови на тонус сосудов и сердечной мышцы связано с наличием в них a - и b -адренорецепторов. При возбуждении a -адренорецепторов происходит сужение, а при возбуждении b -адренорецепторов - расширение кровеносных сосудов. Количество a - и b -рецепторов в разных сосудах неодинаково. При преобладании в сосудах a -рецепторов адреналин крови вызывает их сужение, а при преобладании b -рецепторов - расширение. При низких концентрациях адреналина в плазме первыми возбуждаются как более возбудимые b -рецепторы. При одновременном возбуждении a - и b -рецепторов преобладает вазоконстрикторный эффект.

В основе нервной регуляции кровообращения лежит взаимодействие безусловных и условных сердечно-сосудистых рефлексов. Их подразделяют на собственные и сопряженные рефлексы. Афферентное звено собственных рефлексов К. представлено ангиоцепторами (баро- и хеморецепторами), расположенными в различных участках сосудистого русла и в сердце. Местами они собраны в скопления, образующие рефлексогенные зоны. Главными из них являются зоны дуги аорты, каротидного синуса, позвоночной артерии. Афферентное звено сопряженных рефлексов кровообращения располагается за пределами сосудистого русла, его центральная часть включает различные структуры коры головного мозга, гипоталамуса, продолговатого и спинного мозга. В продолговатом мозге располагаются жизненно важные ядра сердечно-сосудистого центра: нейроны латеральной части продолговатого мозга через симпатические нейроны спинного мозга оказывают тоническое активирующее влияние на сердце и кровеносные сосуды; нейроны медиальной части продолговатого мозга тормозят симпатические нейроны спинного мозга; моторное ядро блуждающего нерва угнетает деятельность сердца; нейроны вентральной поверхности продолговатого мозга стимулируют деятельность симпатической нервной системы. Через гипоталамус осуществляется связь нервного и гуморального звеньев регуляции К. Эфферентное звено регуляции кровообращения представлено симпатическими пре- и постганглионарными нейронами, пре- и постганглионарными нейронами парасимпатической нервной системы (см. Вегетативная нервная система ). Вегетативная иннервация охватывает все кровеносные сосуды кроме капилляров.

Симпатические адренергические нервы вызывают сужение периферических сосудов. В окончаниях постганглионарных симпатических нейронов выделяется норадреналин (см. Медиаторы ). Степень сокращения гладких мышц сосудов зависит от количества выделившегося медиатора, а оно связано с частотой эфферентной импульсации. В покое по вазоконстрикторным нейронам поступают импульсы с частотой 1-3 импульса в 1 с. Максимальное сужение сосудов наступает при частоте 10 импульсов в 1 с . Изменение частоты импульсации приводит или к увеличению сосудистого тонуса (при учащении импульсов), или к его уменьшению (при урежении импульсов), т.е. происходит относительное сужение или расширение сосудов.

В нормальных условиях все механизмы регуляции К. взаимодействуют друг с другом по принципам, описываемым теорией функциональных систем (см. Функциональные системы ), влияя на сердечный выброс, общее периферическое сосудистое сопротивление, емкость сосудов и объем циркулирующей крови.

Взаимосвязь различных параметров кровообращения , закономерности их взаимодействия рассматриваются гемодинамикой - специальным разделом физиологии К. , занимающимся изучением общих и частных случаев нарушений кровообращения применительно к клинической практике.

Общие механизмы нарушений кровообращения . Нарушения кровообращения могут быть вызваны изменениями функции сердца, сосудов, а также реологических свойств текущей по ним крови. Поскольку отдельные части кровеносной системы тесно связаны между собой, нарушение функции каждой из них всегда оказывает влияние на функцию других. Нарушения К. могут быть общими, охватывая всю кровеносную систему, и местными (в отдельных участках сосудистого русла). Поскольку непрерывное кровообращение необходимо для обеспечения нормального функционирования любых частей организма, его нарушение влечет за собой расстройства функции соответствующих органов.

Сердце работает как насос, перекачивающий кровь из венозной системы в артериальную. Для того чтобы кровоток во всей сосудистой системе организма был непрерывным, необходим некоторый постоянный уровень кровяного давления в аорте и крупных артериальных ветвях, называемый общим артериальным давлением (АД).

Величина общего АД зависит от минутного объема крови, выбрасываемой сердцем, и общего периферического сопротивления. При увеличении минутного объема крови или общего периферического сопротивления АД повышается, и наоборот. Длительное повышение общего артериального давления (см. Гипертензия артериальная ) обычно бывает обусловлено увеличением периферического сопротивления. Патологическое понижение общего артериального давления (см. Гипотензия артериальная ) чаще всего связано с уменьшением минутного объема крови при недостаточности сердечной деятельности или с уменьшением возврата крови из вен к сердцу (обычно при уменьшении объема циркулирующей крови). Характер кровотока в каждом органе в любых частях тела выражается зависимостью

где Q - объемная скорость кровотока, D Р - градиент давления на протяжении данного сосудистого русла и R - сопротивление току крови в нем. Для кровеносной системы каждого органа градиент давления соответствует артериовенозной разности давлений, т. е разности давлений между артериями (Р арт.) и венами (Р вен.). Следовательно,

Понижение Р арт. так же, как и повышение Р вен. , влечет за собой уменьшение Q в сосудистой системе данного органа (при условии неизменного сопротивления на ее протяжении). С другой стороны, сопротивление кровотоку определяется шириной просвета сосудов в данном органе и реологическими свойствами крови. Как только это сопротивление уменьшается (например, при местном расширении артерий и артериол), местный кровоток усиливается, что вызывает артериальную гиперемию . Наоборот, увеличение сопротивления в периферических артериях (при местной вазоконстрикции, при их тромбозе и т.д.) приводит к уменьшению объемной скорости кровотока в органе и возникновению ишемии . Увеличение сопротивления может происходить и в капиллярах той или иной сосудистой области, например вследствие усиленной внутрисосудистой агрегации эритроцитов. Наконец, сопротивление может возрастать и в венозной системе того или иного органа (например, при тромбозе или сдавлении вен). В этих случаях в системе микроциркуляции возникает венозный застой, сопровождающийся уменьшением объемной скорости кровотока в органе.

Причинами нарушения основной, т.е. насосной, функции сердца могут быть уменьшение возврата крови из вен к сердцу, что обычно бывает обусловлено уменьшением объема циркулирующей крови; декомпенсированные пороки сердца, в частности недостаточность клапанов сердца, когда неполное смыкание их створок приводит к возврату части крови в ретроградно расположенную полость сердца или же имеется стеноз сердечных отверстий, значительно увеличивающий сопротивление кровотоку в них; слабость сердечной мышцы, сокращения которой не обеспечивают достаточно высокого внутрижелудочкового давления для того, чтобы перемещать весь объем крови в пределах большого и малого круга кровообращения ; неспособность полостей сердца к достаточному расширению во время диастолы в результате накопления значительного количества крови (при тампонаде сердца) или экссудата (при перикардитах) в полости перикарда или же облитерации последней вследствие хронического перикардита.

Изменения величины сопротивления в артериях отдельных органов обычно не отражаются на уровне общего АД, но ведут к изменениям в их кровоснабжении. Такого рода нарушения функции периферических артерий могут быть связаны с функциональным расширением или сужением сосудов (см. Ангиоспазм ), со структурными изменениями стенок (см. Атеросклероз ), с полной или частичной закупоркой сосудистого просвета (см. Тромбоз , Эмболия ).

Ослабление кровотока в отдельных артериях вследствие увеличения сопротивления в них не обязательно ведет к уменьшению снабжения органа кровью, т.к. при этом может иметь место приток крови по коллатералям.

Если же коллатеральный приток крови недостаточен, то в соответствующих участках ткани (или органа) возникает ишемия.

Роль нарушений функции венозной системы в общих расстройствах кровообращения обусловлена их емкостной функцией. Вены осуществляют дренаж крови всех органов. Сопротивление кровотоку в венах очень низкое и может только возрастать, например при их сдавлении или закупорке тромбом. При этом затрудняется отток крови из микроциркуляторной системы соответствующего органа, что может сопровождаться развитием венозного застоя.

Микроциркуляторные нарушения имеют весьма существенное значение, т.к. в организме не происходит ни одного физиологического или патологического процесса без участия системы микроциркуляции . Микроциркуляторное русло включает в себя капилляры, ветвления соответствующих мелких артерий и вен. Основной функцией этих сосудов является обеспечение адекватного кровоснабжения определенных участков ткани, которое при нормальных условиях соответствует ее метаболическим потребностям. Изменения притока крови со стороны артерий в капилляры могут вызывать такие нарушения микроциркуляции, как артериальная гиперемия или ишемия. Артериальная гиперемия возникает при расширении артериальных сосудов микроциркуляторного русла. Градиент давлений и скорость кровотока в капиллярах при этом увеличиваются. Концентрация эритроцитов в крови (гематокрит), протекающей по микроциркуляторному руслу, и количество функционирующих капилляров растут. Внутрикапиллярное давление повышается, это способствует переходу воды из крови в тканевые щели, что при определенных условиях может привести к отеку ткани.

При констрикции приводящих артерий или возникновении препятствий для кровотока в их просвете в микроциркуляторном русле развивается ишемия, при которой основные параметры микроциркуляции изменяются в противоположном направлении: линейная скорость кровотока и гематокрит в капиллярах понижаются, приводя к недостаточности снабжения тканей кислородом, - возникает гипоксия . Внутрикапиллярное давление падает, и количество функционирующих капилляров сокращается. При этом уменьшается доставка энергетических и пластических материалов в ткани, а продукты обмена веществ накапливаются в них. Если коллатеральный приток крови не устраняет дефицита кровоснабжения, то нарушается метаболизм ткани и развиваются различные патологические изменения вплоть до некроза.

При затруднении оттока крови в венозную систему отмечаются типичные для венозного застоя нарушения микроциркуляции. Градиент кровяного давления в капиллярах понижается, что приводит к значительному замедлению в них кровотока. При этом снабжение тканей кислородом и другими энергетическими веществами уменьшается, а продукты обмена веществ не удаляются и задерживаются в них. В результате изменяются механические свойства ткани: ее растяжимость растет, а упругость падает. При таких условиях резко усиливается фильтрация жидкости из капилляров в ткань и развивается отек.

Микроциркуляция может нарушаться также независимо от первичных изменений притока крови из артерий или ее оттока в вены. Это происходит, когда меняются реологические свойства крови вследствие усиления внутрисосудистой агрегации эритроцитов, причем кровоток в капиллярах замедляется в разной степени, вплоть до его полной остановки - развития стаза.

Нарушения функции сердечно-сосудистой системы в целом могут быть вызваны воздействием разнообразных патогенных факторов на сердце, артерии, капилляры и вены, а также на циркулирующую в них кровь непосредственно или опосредованно - через нейрогуморальные механизмы. Поэтому различные нарушения функции вегетативной нервной системы, желез внутренней секреции, а также синтеза и превращений в организме разных физиологически активных веществ вызывают нарушения в системе кровообращения . При этом нейрогуморальные факторы, участвующие в регуляции нормальной работы сердца, в определенных условиях также вызывают нарушения его деятельности. Величина общего АД в большой степени зависит от влияний нервных и гуморальных факторов, действующих и на сердечную деятельность, и на тонус стенок периферических артерий.

Нейрогуморальные факторы, специфически действующие на артерии тех или иных органов, могут становиться причиной нарушений кровоснабжения тех или иных органов. Необходимым условием для этого является местное образование или специфическое действие таких физиологически активных веществ, как простагландины и серотонин, способствующие развитию спазма крупных артерий, снабжающих кровью какой-либо орган, например головной мозг.

Компенсация при нарушениях кровообращения . При возникновении каких-либо нарушений кровообращения обычно быстро наступает его функциональная компенсация. Компенсация осуществляется прежде всего теми же механизмами регулирования, что и в норме. На ранних стадиях нарушений кровообращения их компенсация происходит без каких-либо существенных сдвигов в структуре сердечно-сосудистой системы. Структурные изменения тех или иных частей системы кровообращения (например, гипертрофия миокарда, развитие артериальных или венозных коллатеральных путей) возникают обычно позже и направлены на улучшение работы механизмов компенсации.

Компенсация возможна за счет усиления сокращений миокарда, расширения полостей сердца, а также гипертрофии сердечной мышцы. Так, при затруднении изгнания крови из желудочка, например при стенозе устья аорты или легочного ствола, реализуется резервная мощность сократительного аппарата миокарда, что способствует усилению силы сокращения. При недостаточности клапанов сердца в каждую следующую фазу сердечного цикла часть крови возвращается в обратном направлении. При этом развивается дилатация полостей сердца, носящая компенсаторный характер. Однако чрезмерная дилатация создает неблагоприятные условия для работы сердца.

Повышение общего АД, вызванное увеличением общего периферического сопротивления, компенсируется, в частности, за счет усиления работы сердца и создания такой разности давлений между левым желудочком и аортой, которая способна обеспечить выброс в аорту всего систолического объема крови.

В ряде органов, особенно в головном мозге, при повышении уровня общего АД начинают функционировать компенсаторные механизмы, благодаря которым кровяное давление в сосудах мозга поддерживается на нормальном уровне.

При увеличении сопротивления в отдельных артериях (вследствие ангиоспазма, тромбоза, эмболии и т.д.) нарушение кровоснабжения соответствующих органов или их частей может быть компенсировано за счет коллатерального притока крови. В головном мозге коллатеральные пути представлены в виде артериальных анастомозов в области виллизиева круга и в системе пиальных артерий на поверхности больших полушарий. Артериальные коллатерали хорошо развиты и в сердечной мышце. Помимо артериальных анастомозов важную роль для коллатерального притока крови играет их функциональная дилатация, значительно уменьшающая сопротивление кровотоку и способствующая притоку крови в ишемизированную область. Если в расширившихся коллатеральных артериях кровоток оказывается усиленным в течение длительного времени, то наступает постепенная их перестройка, калибр артерий возрастает, так что в дальнейшем они могут полностью обеспечивать кровоснабжение органа в той же степени, что и основные артериальные стволы.

При увеличении сопротивления в отдельных венозных сосудах (при тромбозе, сдавлении вен и т.д.) коллатеральный отток крови осуществляется за счет широкой сети анастомозов, имеющейся в венозной системе. Однако при недостаточности кровотока по коллатеральным путям, особенно при их тромбозе, наступает декомпенсация оттока крови с венозным застоем в соответствующих органах.

Недостаточность кровообращения . Этиология, патогенез и клинические проявления недостаточности кровообращения отличаются разнообразием. Общим для них является наличие дисбаланса между потребностью в кислороде, питательных веществах и их доставкой с кровью. Конкретные причины такого дисбаланса, механизм его возникновения и признаки проявления (общие и местные) могут быть различны. Существует и более узкое понимание недостаточности кровообращения , полностью соответствующее значению терминов «сердечная недостаточность» и «хроническая сердечная недостаточность». Настаивая на понимании недостаточности кровообращения как эквивалента сердечной недостаточности, обычно ссылаются на то, что при этом патологическом состоянии всегда оказываются затронутыми функции сосудистой системы, в частности отмечается сосудистая дистония на различных уровнях, например, при такой форме сердечной недостаточности, как кардиогенный шок (см. Инфаркт миокарда ), наблюдаются разнообразные сосудистые реакции: повышение тонуса резистивных сосудов в первой фазе шока и резкое падение во второй. При хронической сердечной недостаточности также выявляются различные изменения периферического сосудистого сопротивления и венозного тонуса, связанные с гипоксией артериальных стенок, длительными застойными явлениями в венозной системе и т.д., что свидетельствует не только о недостаточности кровообращения, но и о сердечно-сосудистой недостаточности. Наряду с этими терминами иногда используются термины «декомпенсация кровообращения» и «декомпенсация сердечной деятельности». Однако большинство советских кардиологов рекомендуют применять термин «сердечная недостаточность». При этом отмечают, что первичным этиологическим звеном в подобных случаях является снижение насосной функции сердца, а те или иные изменения со стороны сосудистого тонуса имеют в этих случаях вторичный характер. Говорить о сердечно-сосудистой недостаточности можно лишь тогда, когда функция сердца и тонус сосудов нарушаются одновременно, например под действием того или иного токсического фактора. Критически следует относиться и к понятию «декомпенсация сердечной деятельности». На различных стадиях сердечной недостаточности речь идет не о декомпенсации, а, напротив, о включении тех или иных компенсаторных механизмов, которые в здоровом организме при данном уровне обменных процессов не функционируют. Так, на первой стадии сердечной недостаточности наблюдается учащение сердечных сокращений в покое, в результате чего увеличивается сердечный выброс, что позволяет обеспечить жизненные потребности организма, несмотря на снижение насосной функции сердца. По существу лишь терминальную стадию сердечной недостаточности можно рассматривать как декомпенсацию, когда мобилизация всех компенсаторных механизмов не в состоянии обеспечить жизнедеятельность организма.

Генерализованная недостаточность кровообращения включает также различные формы острой и хронической сосудистой недостаточности, такие как обморок , коллапс , шок , длительное снижение артериального давления.

Недостаточность кровообращения нередко носит регионарный характер и проявляется в виде нарушений кровотока, вызываемых сосудистой непроходимостью в результате экстравазальных компрессионных процессов, развития внутрисосудистых препятствий кровотоку (например, в результате атеросклероза сосудов, васкулитов, эмболии, тромбоза, травмы сосуда) и, наконец, изменений сосудистого тонуса (чаще всего спазма артерий и артериол и снижения тонуса вен). Клиническое значение регионарной недостаточности кровообращения зависит от локализации поражения сосудистой системы и от степени развившихся при этом нарушений кровоснабжения. Особое значение имеет коронарная недостаточность , расстройства артериального кровоснабжения мозга (см. Мозговое кровообращение ), сосудов конечностей (см. Облитерирующие поражения сосудов конечностей ) и др. Вообще же нарушение кровотока по любой артерии всегда представляет опасность для функции васкуляризируемого органа, если только оно не компенсируется достаточно развитыми коллатералями. В патогенезе регионарных проявлений недостаточности кровообращения большую роль играют расстройства в системе микроциркуляции: спазмы и дистония артериол, стазы в капиллярной системе, нарушение тонуса венул вследствие гипоксии и выделения в кровяное русло биологически активных метаболитов.

Из форм недостаточности кровообращения , развивающихся в венозной системе, чаще всего встречаются нарушения оттока крови (венозного возврата) в результате тромбофлебита , а также снижения венозного тонуса (например, венозной гипотензии в венах нижних конечностей у лиц пожилого возраста).

Методы исследования кровообращения . Существует большое число различных методов, позволяющих оценивать те или иные характеристики движения и распределения крови в организме, а также функцию звеньев, осуществляющих эти процессы. При этом решаются две главные задачи: установление общих закономерностей функционирования сердечно-сосудистой системы и выявление индивидуальных функциональных особенностей кровообращения , что необходимо для практических целей, в частности для диагностики нарушений кровообращения.

Методы исследования кровообращения делят на инвазивные (кровавые) и неинвазивные (бескровные). Структуру различных отделов сердечно-сосудистой системы оценивают с помощью различных рентгенологических методов (см.

Библиогр.: Власов Ю.А. Онтогенез кровообращения человека, Новосибирск, 1985; Джонсон П. Периферическое кровообращение , пер. с англ., М., 1982; Руководство по кардиологии, под ред. Е.И. Чазова, т. 2, 1982; Руководство по физиологии: Физиология кровообращения. Физиология сосудистой системы, под ред. Б.И. Ткаченко, с. 56, Л., 1984; Физиология человека, под ред. Р. Шмидта и Г. Тевса, пер. с англ., т. 3, М., 1986; Функциональные системы организма, под ред. К. В. Судакова, М., 1987.

Их включение направлено на восстановление соответствия кровообращения с возможностями сердца.

    Приспособительные сердечно-сосудистые рефлексы.

    При повышении давления в полости левого желудочка, например, при стенозе устья аорты, расширяются артериолы и вены большого круга кровообращения, и возникает брадикардия. В результате этого перекачивание крови из левого желудочка в аорту облегчается и уменьшается приток крови к правому предсердию, улучшается питание миокарда.

    При пониженном давлении в левом желудочке и аорте возникает рефлекторное сужение артериальных и венозных сосудов и тахикардия. В результате давление крови увеличивается.

    При повышенном давлении в левом предсердии и легочных венах суживаются мелкие артерии и артериолы малого круга (рефлекс Китаева). Включение рефлекса Китаева способствует уменьшению кровенаполнения капилляров и снижает опасность развития отека легких.

    При повышении давления в легочных артериях и правом желудочке включается разгрузочный рефлекс Парина. То есть происходит расширение артерий и вен большого круга кровообращения, возникает брадикардия. Этим уменьшается угроза развития отека легких.

    Изменения диуреза также относят к экстракардиальным механизмам компенсации.

А). При уменьшении объема артериальной крови происходит задержка солей и воды почками. Вследствие этого происходит увеличение объема циркулирующей крови, венозного притока крови и минутного выброса сердца.

Б). При увеличении объема и давления крови в предсердиях происходит секреция предсердного натрийуретического фактора. Он действует на почки, вызывая увеличение диуреза, снижая тем самым повышенное артериальное давление.

3. К экстракардиальным компенсаторным механизмам относятся все те, которые включаются при гипоксиях (смотри лекцию по теме «Патология дыхания»).

Особенности гемодинамики и механизмы компенсации при пороках сердца.

    НЕДОСТАТОЧНОСТЬ КЛАПАНА АОРТЫ.

При данном виде порока полулунные створки аортального клапана во время диастолы желудочка не закрывают полностью аортальное отверстие. Поэтому часть крови, выброшенной в аорту во время систолы, возвращается назад в левый желудочек во время диастолы. Давление крови в аорте при этом резко снижается. Возврат крови назад называют регургитацией или обратным сбросом, порочным током крови. Движение крови в нормальном направлении называют эффективным или поступательным объемом. Сумма этих объемов крови называется тотальным или общим объемом.

Таким образом, при недостаточности клапана аорты во время диастолы левый желудочек заполняется кровью, притекающей как из левого предсердия, так и из аорты. Его диастолическое наполнение растет и, по закону Франка-Старлинга, усиливается систола. Расширение полости сердца, сопровождающееся увеличением силы его сокращения, называется тоногенной дилятацией. Ее следует отличать от миогенной дилятации, при которой возникает ослабление силы систолы. Таким образом, вследствие тоногенной дилятации и усиления систолы объем крови, поступающий в аорту, увеличивается. И, несмотря на регургитацию крови, эффективный, поступательный объем будет нормальным.

Постоянное выполнение увеличенной работы приводит к гипертрофии левого желудочка. Гипертрофия, которая возникает вследствие увеличенной работы объема (то есть на базе тоногенной дилятации), когда степень утолщения пропорциональна увеличению полости сердца, называется эксцентрической.

Таким образом, компенсация осуществляется, в основном, за счет тоногенной дилятации и эксцентрической гипертрофии левого желудочка. Компенсаторное значение, при этом виде порока, имеет также рефлекторная тахикардия, так как преимущественно укорачивается диастола, в течение которой происходит регургитация крови. Более полному опорожнению левого желудочка способствует также и снижение периферического сопротивления сосудов большого круга кровообращения.

    СТЕНОЗ УСТЬЯ АОРТЫ.

При сужении устья аорты затруднен переход крови из левого желудочка в аорту. Преодолевая сопротивление, левый желудочек усиливает систолическое напряжение. Возникает гипертрофия, которая развивается без увеличения полости сердца. Такая гипертрофия называется концентрической. При концентрической гипертрофии сердце потребляет больше кислорода, чем при эксцентрической.

Компенсация порока осуществляется за счет концентрической гипертрофии левого желудочка, рефлекторного снижения тонуса периферических сосудов большого круга кровообращения и рефлекторной брадикардии.

В фазе компенсации легочное кровообращение при этих двух видах порока сердца не страдает.

    НЕДОСТАТОЧНОСТЬ ЛЕВОГО АТРИОВЕНТРИКУЛЯРНОГО

(МИТРАЛЬНОГО, ДВУХСТВОРЧАТОГО) КЛАПАНА.

Это самый распространенный порок сердца. Во время систолы левого желудочка часть крови возвращается в левое предсердие. В результате – объем крови в левом предсердии увеличивается и возникает тоногенная дилятация. Во время диастолы он тоже заполняется большим объемом крови. Благодаря механизму Франка-Старлинга тотальный систолический объем увеличивается на объем регургитации и эффективный кровоток сохраняется.

Таким образом, компенсация этого порока осуществляется за счет тоногенной дилятации левого предсердия и желудочка, эксцентрической гипертрофии левого предсердия и желудочка.

Как и при ранее разобранных пороках, если вследствие увеличения порочности или ослабления миокарда механизмы компенсации окажутся недостаточными и давление в левом предсердии будет существенно нарастать, к компенсации подключиться правый желудочек.

    СТЕНОЗ ЛЕВОГО АТРИОВЕНТРИКУЛЯРНОГО ОТВЕРСТИЯ.

При уменьшении площади митрального отверстия повышается систолическое давление в левом предсердии, которое концентрически гипертрофируется. Однако даже гипертрофированный миокард предсердия не в состоянии долго компенсировать нарастающее препятствие для кровотока. Следует учесть, что во время систолы предсердия в желудочек переправляется лишь около 20 % крови. Остальное количество идет самотеком через предсердие из легочных вен в желудочек. Давление в левом предсердии начинает повышаться. Присоединяется рефлекторная тахикардия. В этом случае на систолы предсердий приходится около 40 % объема крови. Это создает дополнительные возможности для компенсации. Но когда давление в левом предсердии достигает 25-30 мм. рт. столба, наступает полная его декомпенсация. И вся кровь течет из легочных вен в левый желудочек во время его диастолы через миогенно дилятированное (расширенное) предсердие. Повышение давления крови в левом предсердии влечет за собой повышение давления в легочных венах, а затем и в легочных артериях. С этого момента компенсацию стеноза целиком осуществляет правый желудочек, который концентрически гипертрофируется.

При повышении давления в левом предсердии и легочных венах включается рефлекс Китаева. Сужение мелких артерий и артериол малого круга кровообращения разгружает легочные капилляры. И угроза развития отека легких уменьшается. Но, с другой стороны, спазм артерий резко повышает нагрузку на относительно слабый правый желудочек. Очевидно, что разгрузка капилляров одновременно уменьшает напор крови в области стеноза, уменьшая минутный объем сердца.

Включающийся вслед за этим разгрузочный рефлекс Парина также имеет относительное значение.

Таким образом, по мере нарастания стеноза неуклонно повышается капиллярное давление в легких. Если при сужении атриовентрикулярного отверстия в 3-4 раза давление повышается только при физических нагрузках, то при сужении отверстия в 5-10 раз – капиллярное давление становится критическим – около 35 мм. ртутного столба. Выше этого уровня развивается отек легких. При таком давлении больной страдает от мучительной одышки, и даже незначительная физическая или эмоциональная нагрузка могут его погубить.

Пороки клапанов правого отдела сердца развиваются аналогично, но давление будет повышаться в венах большого круга кровообращения.

Механизмы компенсации при сердечной недостаточности делятся на две группы:

1. Интракардиальные (миокардиальные):

а) срочные;

б) долговременные.

2. Экстракардиальные.

Срочные интракардиальные механизмы:

1) в ответ на кратковременную перегрузку объемом - гетерометрический механизм компенсации (закон Франка-Старлинга);

2) в ответ на кратковременную перегрузку давлением - гомеометрический механизм компенсации (феномен Анрепа);

3) рефлекс Бейнбриджа;

4) в ответ на острое повреждение и гибель части кардиомиоцитов - заместительный склероз (замещается только дефект структуры, функция не компенсируется).

Долговременные интракардиальные механизмы - это прогрессирующий процесс ремоделирования миокарда, зависящий от пускового фактора и представленный в виде компенсаторной гиперфункции сердца, в основе которой лежит гипертрофия миокарда.

Экстракардиальные механизмы компенсации при сердечной недостаточности:

I. Компенсаторная гиперактивация нейрогуморалъных систем, направленная на повышение работы сердца:

1) симпатоадреналовой системы (САС);

2) миокардиальной ренин-ангиотензиновой системы (РАС);

3) системы ренин-ангиотензин-альдостерон-АДГ (РААС-АДГ).

II. Компенсаторная гиперактивация дублирующих кислородтранспортных систем - эритропоэза и внешнего дыхания.

Проявления этой группы механизмов: вторичный эритроцитоз с повышением вязкости крови и повышением нагрузки на сердце; одышка.

Гетерометрический механизм (закон Франка-Старлинга) - это такой механизм компенсации, возникающий при перегрузке объемом, в основе которого лежит увеличение напряжения и силы сердечных сокращений в от-

вет на увеличение растяжения миокарда под влиянием избыточного объема крови.

Название механизма связано с возрастанием длины мышечного волокна при растяжении кардиомиоцитов. Увеличение скорости сокращения и расслабления миокарда развивается в связи с более быстрым выбросом катионов кальция из саркоплазматического ретикулума с последующим ускоренным закачиванием его Ca АТФ-азой обратно. Этот механизм возникает при недостаточности клапанов сердца, при гиперволемии, при эритремии.

Гомеометрический механизм (феномен Анрепа) - это такой механизм компенсации, возникающий при повышении сопротивления оттоку крови, в основе которого лежит постепенное повышение силы сердечных сокращений без значительного изменения длины мышечных волокон. В этом случае длина мышечного волокна практически не увеличивается (поэтому и механизм называется гомеометрическим), но повышается давление и напряжение, возникающее при сокращении мышц в конце диастолы. Повышение силы сердечных сокращений происходит не сразу, а постепенно, пока не достигнет уровня, необходимого для сохранения минутного объема крови. Этот механизм развивается при стенозах клапанов сердца, артериальной гипертензии и др. Из двух описанных механизмов наиболее полезен гетерометрический механизм, так как меньше потребляется кислорода, меньше расходуется энергии.

Рефлекс Бейнбриджа - это развитие тахикардии (увеличение частоты сердечных сокращений) вследствие повышения давления крови в полных венах, правом предсердии и растяжения их.

Еще по теме МЕХАНИЗМЫ КОМПЕНСАЦИИ ПРИ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ:

  1. СВЯЗЬ ПАТОГЕНЕЗА ЗАСТОЙНОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ И СИМПТОМОВ ЛЕВО- И ПРАВОЖЕЛУДОЧКОВОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ

Регуляция мозгового кровообращения осуществляется сложной системой, включающей интра- и экстрацеребральные механизмы. Эта система способна к саморегуляции (т.е. может поддерживать кровоснабжение головного мозга в соответствии с его функциональной и метаболической потребностью и тем самым сохранять постоянство внутренней среды), что осуществляется путем изменения просвета мозговых артерий. Эти гомеостатические механизмы, развившиеся в процессе эволюции, весьма совершенны и надежны. Среди них выделяют следующие основные механизмы саморегуляции.

Нервный механизм передает информацию о состоянии объекта регулирования посредством специализированных рецепторов, расположенных в стенках сосудов и в тканях. К ним, в частности, относятся механорецепторы, локализующиеся в кровеносной системе, сообщающие об изменениях внутрисосудистого давления (баро- и прессорецепторы), в том числе прессорецепторы каротидного синуса, при их раздражении расширяются мозговые сосуды; механорецепторы вен и мозговых оболочек, которые сигнализируют о степени их растяжения при увеличении кровенаполнения или объема мозга; хеморецепторы каротидного синуса (при их раздражении суживаются мозговые сосуды) и самой ткани мозга, откуда идет информация о содержании кислорода, углекислоты, о колебаниях рН и о других химических сдвигах в среде при накоплении продуктов метаболизма или биологически активных веществ, а также рецепторы вестибулярного аппарата, аортальной рефлексогенной зоны, рефлексогенные зоны сердца и коронарных сосудов, ряд проприорецепторов. Особенно велика роль синокаротидной зоны. Она оказывает влияние на мозговое кровообращение не только опосредовано (через общее АД), как это представлялось ранее, но и непосредственно. Денервация и новокаинизация этой зоны в эксперименте, устраняя сосудосуживающие влияния, ведет к расширению мозговых сосудов, к усилению кровоснабжения головного мозга, к повышению в нем напряжения кислорода.

Гуморальный механизм заключается в прямом воздействии на стенки сосудов-эффекторов гуморальных факторов (кислорода, углекислоты, кислых продуктов метаболизма, ионов К и др.) путем диффузии физиологически активных веществ в стенку сосудов. Так, мозговое кровообращение усиливается при уменьшении содержания кислорода и (или) увеличении содержания углекислого газа в крови и, наоборот, ослабляется, когда содержание газов в крови меняется в противоположном направлении. При этом происходит рефлекторная дилятация или констрикция сосудов в результате раздражения хеморецепторов соответствующих артерий мозга при изменении содержания в крови кислорода и углекислоты. Возможен и механизм аксонрефлекса.


Миогенный механизм реализуется на уровне сосудов-эффекторов. При их растяжении тонус гладких мышц возрастает, а при сокращении наоборот снижается. Миогенные реакции могут способствовать изменениям сосудистого тонуса в определенном направлении.

Разные механизмы регуляции действуют не изолировано, а в различных сочетаниях друг с другом. Система регулирования поддерживает постоянный кровоток в мозге на достаточном уровне и быстро изменяет его при воздействии различных «возмущающих» факторов.

Таким образом, понятие «сосудистые механизмы» включает структурные и функциональные особенности соответствующих артерий или их сегментов (локализацию в микроциркуляторной системе, калибр, строение стенок, реакции на различные воздействия), а также их функциональное поведение – специфическое участие в тех либо иных видах регуляции периферического кровообращения и микроциркуляции.

Выяснение структурно-функциональной организации сосудистой системы головного мозга позволило сформулировать концепцию о внутренних (автономных) механизмах регуляции мозгового кровообращения при различных возмущающих воздействиях. Согласно этой концепции, в частности, были выделены: «замыкательный механизм» магистральных артерий, механизм пиальных артерий, механизм регуляции оттока крови из венозных синусов мозга, механизм внутримозговых артерий. Суть их функционирования заключается в следующем.

«Замыкательный» механизм магистральных артерий поддерживает в мозге постоянство кровотока при изменениях уровня общего артериального давления. Это осуществляется путем активных изменений просвета мозговых сосудов – их сужения, увеличивающего сопротивление кровотоку при повышении общего АД и, наоборот, расширения, снижающего цереброваскулярное сопротивление при падении общего АД. Как констрикторные, так и дилятаторные реакции возникают рефлекторно с экстракраниальных прессорецепторов, либо с рецепторов самого мозга. Основными эффекторами в таких случаях являются внутренние сонные и позвоночные артерии. Благодаря активным изменениям тонуса магистральных артерий гасятся дыхательные колебания общего артериального давления, а также волны Траубе – Геринга, и тогда кровоток в сосудах мозга остается равномерным. Если же изменения общего АД очень значительны или механизм магистральных артерий несовершенен, вследствие чего нарушается адекватное кровоснабжение головного мозга, то наступает второй этап саморегуляции – включается механизм пиальных артерий, реагирующий аналогично механизму магистральных артерий. Весь этот процесс многозвеньевой. Основную роль в нем играет нейрогенный механизм, однако определенное значение имеют и особенности функционирования гладкомышечной оболочки артерии (миогенный механизм), а также чувствительность последней к различным биологически активным веществам (гуморальный механизм).

При венозном застое, обусловленном окклюзией крупных шейных вен, избыточное кровенаполнение сосудов головного мозга устраняется путем ослабления притока крови в его сосудистую систему вследствие констрикции всей системы магистральных артерий. В таких случаях регуляция происходит также рефлекторно. Рефлексы посылаются с механорецепторов венозной системы, мелких артерий и оболочек мозга (вено-вазальный рефлекс).

Система внутримозговых артерий представляет собой рефлексогенную зону, которая в условиях патологии дублирует роль синокаротидной рефлексогенной зоны.

Таким образом, согласно разработанной концепции, существуют механизмы, ограничивающие влияние общего АД на мозговой кровоток, корреляция между которыми во многом зависит от вмешательства саморегулирующихся механизмов, поддерживающих постоянство сопротивления мозговых сосудов (табл. 1). Однако саморегуляция возможна лишь в определенных пределах, ограниченных критическими величинами факторов, являющихся ее пусковыми механизмами (уровень системного АД, напряжения кислорода, углекислоты, а также рH вещества мозга и др.). В клинических условиях важно определить роль исходного уровня АД, его диапазона, в рамках которого мозговой кровоток сохраняет стабильность. Отношение диапазона этих изменений к исходному уровню давления (показатель саморегуляции мозгового кровотока) в известной мере определяет потенциальные возможности саморегуляции (высокий или низкий уровень саморгеуляции).

Нарушения саморегуляции мозгового кровообращения возникают в следующих случаях.

1. При резком снижении общего АД, когда градиент давления в кровеносной системе мозга уменьшается настолько, что не может обеспечить достаточный кровоток в мозге (при уровне систолического давления ниже 80 мм рт. ст.). Минимальный критический уровень системного АД равен 60 мм рт. ст. (при исходном – 120 мм рт. ст.). При его падении мозговой кровоток пассивно следует за изменением общего АД.

2. При остром значительном подъеме системного давления (выше 180 мм рт. ст.), когда нарушается миогенная регуляция, так как мышечный аппарат артерий мозга утрачивает способность противостоять повышению внутрисосудистого давления, в результате чего расширяются артерии, усиливается мозговой кровоток, что чревато «мобилизацией» тромбов и эмболией. Впоследствии изменяются стенки сосудов, а это ведет к отеку мозга и резкому ослаблению мозгового кровотока, несмотря на то, что системное давление продолжает оставаться на высоком уровне.

3. При недостаточном метаболическом контроле мозгового кровотока. Так, иногда после восстановления кровотока в ишемизированном участке мозга концентрация углекислоты снижается, но рН сохраняется на низком уровне вследствие метаболического ацидоза. В результате сосуды остаются расширенными, а мозговой кровоток – высоким; кислород утилизируется не в полной мере и оттекающая венозная кровь имеет красный цвет (синдром избыточной перфузии).

4. При значительном снижении интенсивности насыщения крови кислородом или увеличении напряжения углекислоты в мозге. При этом активность мозгового кровотока также меняется вслед за изменением системного АД.

При срывах механизмов саморегуляции артерии мозга утрачивают способность к сужению в ответ на повышение внутрисосудистого давления, пассивно расширяются, вследствие чего избыточное количество крови под высоким давлением направляется в мелкие артерии, капилляры, вены. В результате повышается проницаемость стенок сосудов, начинается выход белков, развивается гипоксия, возникает отек мозга.

Таким образом, нарушения мозгового кровообращения компенсируются до определенных пределов за счет местных регуляторных механизмов. Впоследствии в процесс вовлекается и общая гемодинамика. Однако даже при терминальных состояниях в течение нескольких минут за счет автономности мозгового кровообращения в мозге поддерживается кровоток, а напряжение кислорода падает медленнее, чем в других органах, так как нервные клетки способны поглощать кислород при таком низком парциальном давлении его в крови, при котором другие органы и ткани поглощать его не могут. По мере развития и углубления процесса все более нарушаются взаимоотношения между мозговым кровотоком и системной циркуляцией, иссякает резерв ауторегулирующих механизмов, и кровоток в мозге все больше начинает зависеть от уровня общего АД.

Таким образом, компенсация нарушений мозгового кровообращения осуществляется при помощи тех же, функционирующих в нормальных условиях, регуляторных механизмов, но более напряженных.

Для механизмов компенсации характерна двойственность: компенсация одних нарушений вызывает другие циркуляторные расстройства, например, при восстановлении кровотока в ткани, испытавшей дефицит кровоснабжения, в ней может развиться постишемическая гиперемия в виде избыточной перфузии, способствующей развитию постишемического отека мозга.

Конечной функциональной задачей системы мозгового кровообращения являются адекватное метаболическое обеспечение деятельности клеточных элементов мозга и своевременное удаление продуктов их обмена, т.е. процессы, протекающие в пространстве микрососуд – клетка. Все реакции мозговых сосудов подчинены этим главным задачам. Микроциркуляция в головном мозге имеет важную особенность: в соответствии со спецификой его функционирования активность отдельных областей ткани меняется почти независимо от других областей ее, поэтому микроциркуляция также меняется мозаично – в зависимости от характера функционирования мозга в тот или иной момент. Благодаря ауторегуляции перфузионное давление микроциркуляторных систем любых частей мозга менее зависит от центрального кровообращения в других органах. В мозге микроциркуляция усиливается при повышении уровня метаболизма и, наоборот. Те же механизмы функционируют и в условиях патологии, когда имеет место неадекватность кровоснабжения ткани. При физиологических и патологических условиях интенсивность кровотока в микроциркуляторной системе зависит от величины просвета сосудов и от реологических свойств крови. Однако регулирование микроциркуляции осуществляется в основном путем активных изменений ширины сосудов, в то же время при патологии важную роль играют также изменения текучести крови в микрососудах.